• Title/Summary/Keyword: substrate resistance

Search Result 1,385, Processing Time 0.029 seconds

Comparison of clad layer characteristics with overlapping criterion in multi pass laser cladding (멀티패스 레이저 클래딩에 있어서 중첩률의 기준에 따른 클래드 층의 특성 비교)

  • Kim, Jong-Do;Lee, Eun-Jin;Whang, Jun-Gu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.768-773
    • /
    • 2016
  • Engine valve seat and face, which are the important factors affecting engine performance, are required to have wear, heat and corrosion resistance. In order to produce surface layer with these characteristics, PTA(plasma transferred arc) surfacing procedure is generally employed, but problems, such as large HAZ and high dilution etc., frequently occurr. Laser cladding, which overcomes the drawbacks of conventional technologies, can be employed to create a superior clad layer with low dilution, small heat affected zone, and minimal distortion. However, in case cladding is to be applied to a large area, it is necessary to overlap 1 pass clad layer because of limited clad layer width. Two criteria for the overlapping ratio-beam size and clad layer width-have been considered thus far. Upon inspection of multi pass clads, produced by different overlapping criteria, it was observed that the greater the increase in overlapping ratio, the greater was the decrease in clad layer width and increase in clad layer height regardless of the criterion used. However, a multi pass clad overlapped by the beam size criterion demonstrated a higher hardness value than a clad overlapped by the clad layer width owing to decreasing dilution of the substrate. In conclusion, the beam size was defined as the criterion for the overlapping, because the clad layer width increased or decreased depending upon process parameters.

Preparation of Humidity Sensor Using Novel Photocurable Sulfonated Polyimide Polyelectrolyte and their Properties (광가교성 Sulfonated Polyimide 전해질 고분자를 이용한 습도센서의 제조 및 특성 분석)

  • Lim, Dong-In;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.486-493
    • /
    • 2012
  • Photocurable sulfonated polyimide (SPI) polyelectrolyte containing chalcone group was prepared and fabricated on an alumina electrode pretreated with chalcone-containing silane-coupling agent. SPI films with bis(tetramethyl)ammonium 2,2'-benzidinedisulfonate ($Me_4N$-BDS)/4,4'-diaminochalcone (DAC)/pyromellitic dianhydride (PA)= 90/10/100 possessed very linear response(Y = -0.04528X+7.69446, $R^2=0.99675$) and showed resistance changing from 4.48 to $2.1k{\Omega}$ between 20 and 95 %RH. The response time for absorption and desorption measurements between 33 and 94 %RH% was about 79 s, which affirmed the high efficiency of crosslinked SPI film for rapid detection of humidity. A negative temperature coefficient showing $-0.49%RH/^{\circ}C$ was found and proper temperature compensation should be considered in future applications. Moreover, pretreatment of the substrates with chalcone-containing silane-coupling agent was performed to improve the water durability and the stability of the humidity sensors at a high humidity and a high temperature and long-term stability for 480 h. The crosslinked SPI films anchored to electrode substrate could be a promising material for the fabrication of efficient humidity sensors with superior characteristics compared to the commercially available sensors.

Studies on the Cellular Metabolism in Microorganisms as Influenced by Gamma-irradiation.(II) - On the Respiration Rate and Dehydrogenase Actibity in Yeast Cells Irradiated by $\gamma$-ray. (미생물의 세포생리에 미치는 전이방사선의 영향에 관한 연구 (제 2보) - 효모균의 산소호흡기및 탈수소효소능에 대한 $\gamma$-ray 의 영향)

  • 김종협
    • Korean Journal of Microbiology
    • /
    • v.5 no.2
    • /
    • pp.69-78
    • /
    • 1967
  • Kim, Jong Hyup, (Div. of Biology, Atomic Energy Research Institute.) Studies on the Cellular Metabolism in Microorganisms as influenced by Gamma-irradiation(II). On respiration rate and dehydrogenase activity of yeast cells irradiated by gamma ray from cobalt-60. 1. Oxygen uptake rate of the gamma irraiated yeast cells had been measured with Warburg's manometer, and the $O_{2}$-uptake was compared with those of normal cells. The rate of endogetious respiration increases in its $O_2$-uptake at 150, 000 rentgen dose, and at higher rentoen doses it was decreased. Exogenous respiration begin to decrease in its O_2$-uptake at 5, 000r. doses of irradiation, further decrease with increasing of doses unproportionally. 2. It appears that plasma-membrane and nuclear membrane of yeast cells have changed and denatured by gamma-irradiation, as exogenous respiration of glucose had been decreased at a dose of 200, 000r's irradiation. 3. The activity of glucose, alcoholic, lactic, succinic and glutamic deliydrogenase (G.D.H., A.D.H., L.D.H., S.D.11., and GL.D.H.) in the gamma irradaited cells had been assayed by T.T.C.(Triphenyl tetrazolium chloride) method and spectrophotometry, the obtained results were compared with those of normal cells. 4. At a dose of and 10, 000 rentgens' irradiation of gamma ray, the activty of each debydrogenase (G.D.H., A.D.H., L.D.H., ) shows a sharp and highest peak in optical absorbalicy, but each abtivity of S.D.H and Gl.D.H shows its' maximum peak at a dose of 30, 000r. 5. The curve of each dehydrogenase activity was found to be rhythmical according to dose-rate of gamma irradiation. 6. Comparing with activity of debydrogenase each other, the maximum peak in optical absorbency can be arranged according to order as follows; glucose > alcoholoic > lactic > glutamic > succinic, this order is identical to the order of breakdown utility in respiration of normal yeast cells. 7. The activity of dehydrogenase experimented exhibit a resistance against gamma irradiation at lethal dose of cells, and the activity of dehydrogenase are found to be much resistant than those of respiratory system. We may assume that the membrane substrate of mitochondria or cytoplasm had been destructed by gamma-irradiation much more than that of dehydronase system.

  • PDF

Thermal Stability of Ti-Si-N as a Diffusion Barrier (Cu와 Si간의 확산방지막으로서의 Ti-Si-N에 관한 연구)

  • O, Jun-Hwan;Lee, Jong-Mu
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.215-220
    • /
    • 2001
  • Amorphous Ti-Si-N films of approximately 200 and 650 thickness were reactively sputtered on Si wafers using a dc magnetron sputtering system at various $N_2$/Ar flow ratios. Their barrier properties between Cu (750 ) and Si were investigated by using sheet resistance measurements, XRD, SEM, RBS, and AES depth profiling focused on the effect of the nitrogen content in Ti-Si-N thin film on the Ti-Si-N barrier properties. As the nitrogen content increases, first the failure temperature tends to increase up to 46 % and then decrease. Barrier failure seems to occur by the diffusion of Cu into the Si substrate to form Cu$_3$Si, since no other X- ray diffraction intensity peak (for example, that for titanium silicide) than Cu and Cu$_3$Si Peaks appears up to 80$0^{\circ}C$. The optimal composition of Ti-Si-N in this study is $Ti_{29}$Si$_{25}$N$_{46}$. The failure temperatures of the $Ti_{29}$Si$_{25}$N$_{465}$ barrier layers 200 and 650 thick are 650 and $700^{\circ}C$, respectively.ely.

  • PDF

Characteristics of LSC coated Metallic Interconnect for Solid Oxide Fuel Cell (LSC가 코팅된 고체산화물 연료전지용 금속연결재의 특성 연구)

  • Pyo, Seong-Soo;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.172-177
    • /
    • 2010
  • This study reports the high-temperature oxidation kinetics, ASR(area specific resistance), and interfacial microstructure of metallic interconnects coated with conductive oxides in oxidation atmosphere at $800^{\circ}C$, The conductive material LSC($La_{0.8}Sr_{0.2}CoO_3$, prepared by Solid State Reaction) was coated on the Crofer22APU. The contact behavior of coating layer/metal substrate was increased by sandblast. The electrical conductivity of the LSC coated Crpfer22APU was measured by a DC two probe four wire method for 4000hr, in air at $800^{\circ}C$. Microstructure and composition of the coated layer interface were investigated by SEM/EDS. These results show that a coated LSC layer prevents the formation and growth of oxide scale such as $Cr_2O_3$ and enhances the long-term stability and electrical performance of metallic interconnects for SOFCs.

Cyclic Oxidation Behavior of Vacuum Plasma Sprayed NiCoCrAlY Overlay Coatings (진공 플라즈마 용사법을 통해 형성된 NiCoCrAlY 오버레이 코팅의 반복 산화 거동)

  • Yoo, Yeon Woo;Nam, Uk Hee;Park, Hunkwan;Park, Youngjin;Lee, Sunghun;Byon, Eungsun
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.283-288
    • /
    • 2019
  • MCrAlY overaly coatings are used as oxidation barrier coatings to prevent degradation of the underlying substrate in high temperature and oxidizing environment of the hot section of gas turbines. Therefore, oxidation resistance in high temperature is important property of MCrAlY coatings. Also, coefficients of thermal expansion (CTE) of MCrAlY have middle value of that of Ni-based superalloys and oxides, which have the effect of preventing the delamination of the surface oxides. Cyclic oxidation test is one of the most useful methods for evaluating the high temperature durability of coatings used in gas turbines. In this study, NiCoCrAlY overlay coatings were formed on Inconel 792(IN 792) substrates by vacuum plasma spraying process. Vacuum plasma sprayed NiCoCrAlY coatings and IN 792 susbstrates were exposed to 1000℃ one-hour cyclic oxidation environment. NiCoCrAlY coatings showed lower weight gain in short-term oxidation. In long-term oxidation, IN 792 substrates showed higher weight loss due to delamination of surface oxide but NiCoCrAlY coatings showed lower weight loss. X-ray diffraction (XRD) analysis showed α-Al2O3 and NiCr2O4 was formed during the cyclic oxidation test. Through cross-section observation using scanning electron microscopy (SEM) and electron back scatter diffraction (EBSD) analysis, thermally grown oxide (TGO) layer composed of α-Al2O3 and NiCr2O4 was formed and the thickness of TGO increased during 1000℃ cyclic oxidation test. β phase in upper side of NiCoCrAlY coating was depleted due to oxidation of Al and outer beta depletion zone thickness also increased as the cyclic oxidation time increased.

HVOF Thermal Spray Coating of WC-Co for Durability Improvement of High Speed Spindle (초고속 스핀들의 내구성 향상을 위한 WC-Co 분말의 HVOF 용사 코팅)

  • Kim, K.S.;Baek, N.K.;Yoon, J.H.;Cho, T.Y.;Youn, S.J.;Oh, S.K.;Hwang, S.Y.;Chun, H.G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.4
    • /
    • pp.179-189
    • /
    • 2006
  • High velocity oxygen fuel(HVOF) thermal spray coating of WC-Co powder is one of the most promising candidate for the replacement of the traditional hard chrome plating and ceramics coating because of the environmental problem of the very toxic $Cr^{6+}$ known as carcinogen and the brittleness of ceramics coating. WC-Co micron and nano powder were coated by HVOF thermal spraying method for the study of durability improvement of the high speed spindle. Coatings were planned by Taguchi program for the four spray parameters of spray distance, flow rates of hydrogen, oxygen and powder feed rate. Optimal coating process was obtained by the studies of coating properties such as porosity, surface roughness, micro hardness, and micro structure. WC-Co micron and nano powder were coated on the Inconel 718 substrate by the optimal coating process obtained in this study. The wear behaviors were studied by the sliding wear tester at room temperature and at an elevated temperature of $500^{\circ}C$ for the application to high speed spindle. Sliding wear test was carried out for four most promising hard coatings of chrome coating, ceramics coatings such as $A1_2O_3,\;Cr_2O_3$ and HVOF Co-alloy T800 for the comparison of their wear behaviors. HVOF WC-Co coating was better than other coatings showing highest micro hardness of 1400 Hv and comparable friction coefficients with others. HVOF WC-Co coating is a strong candidate for the replacement of the traditional hard chrome plating for the high speed spindle.

Structural and Electrical Properties of [(Co1-xCux)0.2(Ni0.3Mn0.7)0.8]3O4 Spinel Thin Films for Infrared Sensor Application (적외선 센서용 [(Co1-xCux)0.2(Ni0.3Mn0.7)0.8]3O4 스피넬 박막의 구조 및 전기적 특성)

  • Lee, Kui Woong;Jeon, Chang Jun;Jeong, Young Hun;Yun, Ji Sun;Cho, Jeong Ho;Paik, Jong Hoo;Yoon, Jong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.825-830
    • /
    • 2014
  • $[(Co_{1-x}Cu_x)_{0.2}(Ni_{0.3}Mn_{0.7})_{0.8}]_3O_4$ ($0{\leq}x{\leq}1$) thin films prepared by metal organic decomposition process were fabricated on SiN/Si substrate for infrared sensor application. Their structural and electrical properties were investigated with variation of Cu dopant. The $[(Co_{1-x}Cu_x)_{0.2}(Ni_{0.3}Mn_{0.7})_{0.8}]_3O_4$ (CCNMO) film annealed at $500^{\circ}C$ exhibited a dense microstructure and a homogeneous crystal structure with a cubic spinel phase. Their crystallinity was further enhanced with increasing doped Cu amount. The 120 nm-thick CCNMO (x=0.6) thin film had a low resistivity of $53{\Omega}{\cdot}cm$ at room temperature while the Co-free film (x=1) showed a significantly decreased resistivity of $5.9{\Omega}{\cdot}cm$. Furthermore, the negative temperature coefficient of resistance (NTCR) characteristics were lower than $-2%/^{\circ}C$ for all the specimens with $x{\geq}0.6$. These results imply that the CCNMO ($x{\geq}0.6$) thin films are a good candidate material for infrared sensor application.

Carbon-induced reconstructions on W(110)

  • Kim, Ji-Hyeon;Rojas, Geoff;Anders, Axel;Kim, Jae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.362-362
    • /
    • 2010
  • Today, vast attention has been paid to periodic arrays of nanostructures due to their potential for applications such as memory with huge storage density. Such application requires large-scale fabrication of well ordered nano-sized structures. One of the most widely used methods for the ordered nanostructures is lithography. This top-down process, however, has the limit to reduce size. Here the promising alternative is the self-organization of ordered nano-sized structures such as large scale 2d carbon-induced reconstructions on W(110). In the present study, we report on the first well-resolved atomic resolution STM studies of the well-known R($15{\times}3$) and R($15{\times}12$) carbon induced reconstruction of the W(110). From the atomic image of R($15{\times}3$) for different values of tunneling gap resistance, we can tell there are no missing atoms in unit cells of R($15{\times}3$) and some atomic displacements are substantial from the clean W(110), even though not all the imaged position of atoms correspond to tungsten, but may include those of carbon. We are considering two cases; First case is related to lattice deformation, or top layer of W(110) is deformed in the process of relief of strain caused by random inserting of carbon atoms possibly in the interstitial position. In the second case, R($15{\times}3$) unit cell results from a coincidence lattice between clean W(110) substrate and tungsten carbide overlayer which has rectangular atomic arrangement and giving R($15{\times}3$) coincidence lattice. beta-W2C showing rectangular unit cell should be a candidate. Further, we report on new reconstructions. Unlike the well-known R($15{\times}12$) consisting of two parts, two inner structures between two "Backbone" structures. The new reconstruction, which we found for the first time, contains more parts between the "Backbone"s. Sometimes we can observe the reconstruction consists of only inner parts without "Backbone" parts. Thus, the observed reconstruction can be built by constructing of two types of "Lego"-like block. Moreover, the rectangle shape of "Backbone" transform to parallelogram-like shape over time, the so-called wavy-R($15{\times}12$). Adsorption of hydrogen can be the reason for this transformation.

  • PDF

Behavior of Implanted Dopants and Formation of Molybdenum Siliclde by Composite Sputtering (Composite target으로 증착된 Mo-silicide의 형성 및 불순물의 거동)

  • Cho, Hyun-Choon;Paek, Su-Hyon;Choi, Jin-Seog;Hwang, Yu-Sang;Kim, Ho-Suk;Kim, Dong-Won;Shim, Tae-Earn;Jung, Jae-Kyoung;Lee, Jong-Gil
    • Korean Journal of Materials Research
    • /
    • v.2 no.5
    • /
    • pp.375-382
    • /
    • 1992
  • Molybdenum silicide films have been prepared by sputtering from a single composite MoS$i_2$ source on both P, B$F_2$respectively implanted (5${\times}10^{15}ions/cm^2$ single crystal and P implanted (5${\times}10^{15}ions/cm^2$) polycrystalline silicon substrates followed by rapid thermal annealing in the ambient of argon. The heat treatment temperatures have been varied in the range of 600-l20$0^{\circ}C$ for 20 seconds. The properties of Mo-silicide and the diffusion behaviors of dopant after the heat treatment are investigated using X-ray diffraction, scanning electron microscopy(SEM) , secondary ions mass spectrometry(SIMS), four-point probe and $\alpha-step.$ Annealing at 80$0^{\circ}C$ or higher resulted in conversion of the amorphous phase into predominantly MoS$i_2$and a lower sheet resistance. There was no significant out-diffusion of dopants from both single crystal and polycrystalline silicon substrate into molybdenum silicide layers during annealing.

  • PDF