• Title/Summary/Keyword: substrate inhibitor

Search Result 310, Processing Time 0.022 seconds

Distribution and Characterization of the Neurosteroid Acyltransferase from the Bovine Brain (소의 뇌에서 Neurosteroid Acyltransferase의 분포 및 특성에 관한 연구)

  • Park, In-Ho;Jo, Sung-Jun;Jo, Do-Hyun
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.112-116
    • /
    • 1997
  • The enzymatic properties as well as its distribution in the cerebral region and subcellular organells were investigated for the neurosteroid acyltransferase from the bovine brain, which synthesize the fatty acid esters of the neurosteroids. The cerebellum region was the highest in NSAT activity while the cerebrum was the lowest with 50% of the cerebellar activity. The NSAT was found to be mainly localized in the microsomal fraction. The optimal temperature and pH were $40^{\circ}C$ and 4.9, respectively. When $^3H-DHEA$ was utilized as substrate, the $K_m$ and $V_{max}$ was $32.6\;{\mu}M$ and 4.86 nmole/mg protein/h, respectively. Under the same condition pregnenolone$({\Delta}^5P)$ was a competitive inhibitor with $K_i=22.8\;{\mu}M$ and testosterone was a uncompetitive inhibitor with $K_i=22.8\;{\mu}M$. This may suggest that the NSAT has a different conformation in the acylation of the ${\beta}-hydroxyl$ group at C-3 and C-17.

  • PDF

Protein Expression of Matrix Metalloproteinases of Mouse Reproductive Organs During Estrous Cycle (생식주기에 따른 자성 생쥐의 생식기관의 Matrix Metalloproteinase의 단백질 발현)

  • Kim, Moon-Young;Lee, Ki-Won;Kim, Hae-Kwon;Kim, Moon-Kyoo;Cho, Dong-Jae
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.25 no.2
    • /
    • pp.161-170
    • /
    • 1998
  • Protein expression patterns of matrix metalloproteinases (MMPs) were examined in mouse reproductive organs during estrous cycle. Estrous cycle was classified into diestrus, proestrus, estrus or metestus and MMP expression was analyzed by zymography using gelatin as a substrate. Uterine fluid (UF) obtained both at diestrus and proestrus exhibited 4 major MMPs including 106kDa, 64kDa, 62kDa and 59kDa gelatinases. However, in UF at estrus, the gelatinolytic activity of 64kDa MMP disappeared and that of 106kDa and 62kDa MMPs dramatically decreased. At metestrus, 64kDa MMP activity reappeared and 106kDa and 62kDa MMP exhibited increased activities such that the band intensity of 106kDa was comparable to that in UF at diestrus. Gelatinolytic activity of 59kDa MMP was not changed throughout the cycle. Both ovarian and oviductal tissue homogenate revealed 4 MMPs which corresponded to the 4 MMPs of UF. However, unlike UF MMPs, gelatinolytic activity of these MMPs did not show distinct changes throughout the cycle. Either an inhibitor of MMP, 1,10-phenanthroline, or a metal chelator, EDTA, abolished the appearance of the above MMP activities in gelatinated gel whereas a serine proteinase inhibitor, phcnylmethylsulfonyl fluoride, failed to inhibit the appearance of MMP activities, proving that gelatinolytic activity of the above reproductive tissues were due to the enzymatic activity of MMP. When gclatinolytic activity of mouse serum was examined, it revealed 5 MMPs (131kDa, 106kDa, 89kDa, 64kDa and 62kDa bands) and one gelatinase (84kDa) band. From these results, it is concluded that the protein expression of MMPs of mouse reproductive organs, particularly uterus, is temporally regulated during estrous cycle and uterine 106kDa, 64kDa and 62kDa MMPs are suggested to play an important role in cyclic tissue remodeling of mouse uterus.

  • PDF

Induction of Apoptosis by Ethanol Extract of Scutellaria baicalensis in Renal ell Carcinoma Caki-1 Cells (황금(黃芩) 에탄올 추출물에 의한 인체 신세포암 Caki-1 세포의 자가세포사멸 유도)

  • Hwang, Won Deok;Im, Yong-Gyun;Son, Byoung Yil;Park, Cheol;Park, Dong Il;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.518-528
    • /
    • 2013
  • Scutellaria baicalensis, belonging to the family Labiatae, is widely distributed in Korea, China, Mongolia, and eastern Siberia. It has been used in traditional medicine for various diseases, such as dysentery, pyrexia, jaundice, and carbuncles. In addition, S. baicalensis is reported to possess various beneficial pharmacological activities, including anti-inflammatory, antidiabetic, antiviral, antihypertension, antioxidant, and anticancer effects. However, the molecular mechanisms of its anticancer activity have not been clearly elucidated. In the present study, we investigated the proapoptotic effects of ethanol extract of S. baicalensis (EESB) on human renal cell carcinoma Caki-1 cells. The anti-proliferative activity of EESB was associated with apoptosis induction, which was associated with the up-regulation of death receptor 4, the Fas ligand, and Bax and the down-regulation of Bid, XIAP, and cIAP-1 proteins. EESB treatment also induced mitochondrial dysfunction, proteolytic activation of caspase-3, -8, and -9 and degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase, ${\beta}$-catenin, and phospholipase C-${\gamma}1$. However, pretreatment of a pan-caspase inhibitor, z-VAD-fmk, significantly attenuated the EESB-induced apoptosis. Taken together, these findings suggest that EESB may be a potential chemotherapeutic agent. Further studies will be needed to identify the active compounds that confer the anticancer activity of S. baicalensis.

Antimicrobial and Antioxidative Activities of Solvent Fraction from Humulus japonicus (환삼덩굴의 용매분획별 항균성 및 항산화성)

  • Park, Seung-Woo;Woo, Cheol-Joo;Chung, Shin-Kyo;Chung, Ki-Taek
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.464-470
    • /
    • 1994
  • The biological activities of Humulus japonicus were extracted by water and methanol. Methanol was better solvent than water in the extraction for antimicrobial activities against six different species of bacteria and two yeasts. The methanol extract was systematically fractionated with various organic solvents which have different polarities. From the result of antimicrobial activities against six species of bacteria and two species of yeasts, methanol extract was superior to water extract. The methanol extract of Humulus japonicus showed antimicrobial activity against the all species of microorganisms tested except Escherichia coli . The butanol fraction of methanol extract showed antimicrobial effect on the all species tested. The minimal inhibition concentration(MIC) of the butanol fraction on the growth of microorganisms was ranged between $0.1{\sim}0.4%$. The water extract of Humulus japonicus did not show inhibition of the activity of trypsin but methanol extract showed inhibitory activity. The chloroform fraction of methanol extract showed comparatively higher trypsin inhibitory activity than other fractions. The concentration of 50% inhibition$(IC_{50})$ by chloroform fraction was 1.0 mg/ml. Enzyme-inhibitor complex formation was above 90% of the while for 20 min. It was revealed that methanol extract of Humulus japonicus inhibited peroxide production of lard and soybean oil as substrate by antioxidative test. The chloroform fraction of methanol extract had the highest activity. When 0.2% of chloroform fraction was added, induction period of soybean oil and lard were extended 15, 9 days, respectively.

  • PDF

Inhibitor of Xanthine Oxidase from Onion Skin (양파 껍질에서 분리한 Xanthine Oxidase 저해물질)

  • Ra, Kyung-Soo;Chung, Soo-Hyun;Suh, Hyung-Joo;Son, Jong-Youn;Lee, Hyo-Ku
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.697-701
    • /
    • 1998
  • Two major flavonoid compounds having inhibition activity of xanthine oxidase from onion skin were separated, isolated and identified by ODS chromatography, Sephadex LH-20 chromatography, UV/visible absorption spectroscopy and FAB Mass. Spectral analyses indicated that $F_1$ was a flavonol having 3,5,7,3'-OH and 4'-glucoside (quercetin 4'-glucoside), and $F_2$ was a flavonol having 3(5),7,3',4'-OH (quercetin). FAB-Mass of fraction $F_1\;and\;F_2$ in positive-ion-mode produced a spectra containing main ions at m/z 465, corresponding to the $(M+H)^+$ ion of quercetin 4'-glucoside, and m/z 303, corresponding to the $(M+H)^+$ ion of quercetin. The inhibition mechanisms of $F_1\;and\;F_2$ were a mixture of the uncompetative and non-competative modes, with respect to xanthine as a substrate.

  • PDF

Partial Purification and General Properties of Yeast Acetolactate Synthase (효모 Acetolactate Synthase의 부분 정제와 일반 특성 연구)

  • Koh, Eun-Hie;Song, Soo-Mee;Kim, Sun-Young
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.6
    • /
    • pp.459-465
    • /
    • 1995
  • Acetolactate Synthase (ALS) was partially purified from the yeast and its basic biochemical studies were carried out. Yeast was grown in the minimum media containing 0.5% glucose, 51 mM $K_2HPO_4$, 22 mM $KH_2PO_4$, 8 mM $(NH_4)2SO_4,\;0.4\;m M\;MgSO_4$ for 18 hours at 37 $^{\circ}C$. The cell was ruptured in the buffer (20 mM phosphate buffer pH 7.0, 0.1 mM TPP, 0.5 mM DTT, 1 ${\mu}M$ FAD, and 1 mM MgCl_2$) following an overnight suspension. The supernatant fraction was collected from $10,000{\times}g$ and the enzyme was further purified by ammonium sulfate fractionation, DEAE-Sephacel chromatography and leucine-agarose chromatography. The enzyme activity was measured under the various conditions by the function of protein concentration, time, temperature, pH, and substrate. The optimum temperature was found to be 50$^{\circ}C$, optimum pH 8.0∼8.5. The kinetic parameters, $K_m\;and\;V_{max}$ were 8.4 mM and 17.9 nmol/mg/min respectively. Stability of the enzyme was studied with ethylene glycol and glycerol added to the enzyme solution. Both ethylene glycol and glycerol improved the enzyme stability up to 50%. The study of feedback inhibition showed that valine was a strong inhibitor while leucine was a weak inhibitor.

  • PDF

Anti-diabetic peptides derived from milk proteins (우유단백질 유래 혈당 조절 기능성 펩타이드)

  • Kim, Seonyoung;Imm, Jee-Young
    • Food Science and Industry
    • /
    • v.51 no.4
    • /
    • pp.302-312
    • /
    • 2018
  • Bioactive peptides generated from milk proteins play an important role in the prevention and alleviation of diabetes. Whey proteins possess direct insulinotropic effect by amino acids (especially branch chain amino acids) produced through its gastrointestinal digestion. Additionally, blood glucose level can be lowered by gut hormone which called incretin [glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1)]. However, physiological effects of incretin readily disappeared by dipeptidyl peptidase-4 (DPP-4) causing degradation of GLP-1. Several DPP-4 inhibitors are currently used as therapeutic medicines for the treatment of type II diabetes. More than 60 natural peptide (2-14 amino acids) DPP-4 inhibitors were identified in milk proteins. Peptide DPP-4 inhibitors act as substrate inhibitor and delay breakdown of GLP-1 both in vitro and in vivo. This review summarizes nutritional quality of milk proteins, absorption and mode of action of bioactive peptides, and finally up-to-dated knowledge on DPP-4 inhibitory peptides derived from milk proteins.

New Approaches to the Control of Pathogenic Oral Bacteria (바이오필름을 생성하는 병원성 구강 세균을 제어하는 새로운 접근법)

  • Cho, Soo Jeong
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.100-108
    • /
    • 2021
  • In the oral cavity, there are hundreds of microbial species that exist as planktonic cells or are incorporated into biofilms. The accumulation and proliferation of pathogenic bacteria in the oral biofilm can lead to caries and periodontitis, which are typical oral diseases. The oral bacteria in the biofilm not only can resist environmental stress inside the oral cavity, but also have a 1,000 times higher resistance to antibiotics than planktonic cells by genes exchange through the interaction between cells in the oral biofilm. Therefore, if the formation of oral biofilm is suppressed or removed, oral diseases caused by bacterial infection can be more effectively prevented or treated. In particular, since oral biofilms have the characteristic of forming a biofilm by gathering several bacteria, quorum sensing, a signaling system between cells, can be a target for controlling the oral biofilm. In addition, a method of inhibiting biofilm formation by using arginine, an alkali-producing substrate of oral bacteria, is used to convert the distribution of oral microorganisms into an environment similar to that of healthy teeth or inhibit the secretion of glucosyltransferase by S. mutans to inhibit the formation of non-soluble glucans. It can be a target to control oral biofilm. This method of inhibiting or removing the oral biofilm formation rather than inducing the death of pathogenic bacteria in the oral cavity will be a new strategy that can selectively prevent or therapeutic avenues for oral diseases including dental caries.

Fucoidan Stimulates Glucose Uptake via the PI3K/AMPK Pathway and Increases Insulin Sensitivity in 3T3-L1 Adipocytes (후코이단의 3T3-L1 지방세포에서 PI3K/AMPK 경로를 통한 포도당 흡수 촉진 및 인슐린 민감성 증진 효과)

  • Lee, Ji Hee;Park, Jae Eun;Han, Ji Sook
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Brown seaweeds have been shown to decrease blood glucose levels and improve insulin sensitivity previously. In this study, we investigated the effect of fucoidan, a complex polysaccharide derived from brown seaweeds, on glucose uptake to improve insulin resistance, and examined its mechanism of action in 3T3-L1 adipocytes. We observed that fucoidan significantly increased glucose uptake and it was related to an increased expression of plasma membrane-glucose transporter 4 (PM-GLUT4) in 3T3-L1 adipocytes. Fucoidan treatment increased the activation of phosphatidylinositol-3-kinase (PI3K) and the phosphorylation of insulin receptor substrate 1 (IRS1tyr) compared with that of the control cells. Fucoidan also promoted the phosphorylation of Akt and protein kinase C (PKC)-λ/ζ compared to that of the control cells. Moreover, fucoidan significantly upregulated acetyl-CoA-carboxylase (ACC) and adenosine monophosphate - activated protein kinase (AMPK) phosphorylation. As a result, translocation of GLUT4 was significantly enhanced in 3T3-L1 adipocytes, which significantly promoted glucose uptake via the PI3K/AMPK pathways. The elevation of glucose uptake by fucoidan was blocked by inhibitor of PI3K and inhibitor of AMPK in 3T3-L1 adipocytes. These findings indicate that fucoidan might ameliorate glucose uptake through GLUT4 translocation to the plasma membrane by activating the PI3K/Akt and AMPK pathways in 3T3-L1 adipocytes. Fucoidan is thought to be of high material value to diabetes treatments and functional foods.

2,7-Phloroglucinol-6,6-Bieckol Increases Glucose Uptake by Promoting GLUT4 Translocation to Plasma Membrane in 3T3-L1 Adipocytes (2,7-Phloroglucinol-6,6-Bieckol의 3T3-L1 지방세포에서 GLUT4 활성화를 통한 포도당 흡수 증진 효과)

  • Lee, Hyun-Ah;Han, Ji⁃Sook
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.729-735
    • /
    • 2021
  • Type 2 diabetes occurs when there is an abnormality in the tissue's ability to absorb glucose. Glucose uptake and metabolism by insulin are the basic mechanisms that maintain blood sugar. Glucose uptake goes through various signaling steps initiated by the binding of insulin to receptors on the cell surface. In line with the foregoing, the purpose of this study was to investigate the effect of 2,7-phloroglucinol-6,6-bieckol (PHB), an active compound isolated from Ecklonia cava, on glucose uptake in 3T3-L1 adipocytes. Notably, PHB increased glucose uptake in a dose-dependent manner owing to the enhanced glucose transporter type 4 (GLUT4) expression in the plasma membrane of 3T3-L1 adipocytes. These effects of PHB were attributed to the phosphorylation of insulin receptor substrate-1 and protein kinase B (PKB or AKT), as well as to the phosphoinositide 3-kinase (PI3K) activation in the insulin signaling pathway. PHB also stimulated 5' AMP-activated protein kinase (AMPK) phosphorylation and activation. The phosphorylation and activation of the PI3K/AKT and AMPK pathways by PHB were identified using wortmannin (a PI3K inhibitor) and compound C (an AMPK inhibitor). In this study, we showed that PHB can increase glucose uptake in 3T3-L1 adipocytes by promoting GLUT4 translocation to the plasma membrane via the PI3K and AMPK pathways. The results indicate that PHB may help improve insulin sensitivity.