• Title/Summary/Keyword: substrate binding site

Search Result 145, Processing Time 0.024 seconds

Mutational Analysis of Thermus caldophilus GK24 ${\beta}$-Glycosidase: Role of His119 in Substrate Binding and Enzyme Activity

  • Oh, Eun-Joo;Lee, Yoon-Jin;Choi, Jeong-Jin;Seo, Moo-Seok;Lee, Mi-Sun;Kim, Gun-A;Kwon, Suk-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.287-294
    • /
    • 2008
  • Three amino acid residues (His119, Glu164, and Glu338) in the active site of Thermus caldophilus GK24 ${\beta}$-glycosidase (Tca ${\beta}$-glycosidase), a family 1 glycosyl hydrolase, were mutated by site-directed mutagenesis. To verify the key catalytic residues, Glu164 and Glu338 were changed to Gly and Gln, respectively. The E164G mutation resulted in drastic reductions of both ${\beta}$-galactosidase and ${\beta}$-glucosidase activities, and the E338Q mutation caused complete loss of activity, confirming that the two residues are essential for the reaction process of glycosidic linkage hydrolysis. To investigate the role of His119 in substrate binding and enzyme activity, the residue was substituted with Gly. The H119G mutant showed 53-fold reduced activity on 5mM p-nitrophenyl ${\beta}$-D-galactopyranoside, when compared with the wild type; however, both the wild-type and mutant enzymes showed similar activity on 5mM p-nitrophenyl ${\beta}$-D-glucopyranoside at $75^{\circ}C$. Kinetic analysis with p-nitrophenyl ${\beta}$-D-galactopyranoside revealed that the $k_{cat}$ value of the H119G mutant was 76.3-fold lower than that of the wild type, but the $K_m$ of the mutant was 15.3-fold higher than that of the wild type owing to the much lower affinity of the mutant. Thus, the catalytic efficiency $(k_{cat}/K_m)$ of the mutant decreased to 0.08% to that of the wild type. The $k_{cat}$ value of the H119G mutant for p-nitrophenyl ${\beta}$-D-glucopyranoside was 5.l-fold higher than that of the wild type, but the catalytic efficiency of the mutant was 2.5% of that of the wild type. The H119G mutation gave rise to changes in optima pH (from 5.5-6.5 to 5.5) and temperature (from $90^{\circ}C\;to\;80-85^{\circ}C$). This difference of temperature optima originated in the decrease of H119G's thermostability. These results indicate that His119 is a crucial residue in ${\beta}$-galactosidase and ${\beta}$-glucosidase activities and also influences the enzyme's substrate binding affinity and thermostability.

Kinetic Studies of Peptidylprolyl cis-trans Isomerase from Porcine Spleen

  • Kim, Soo-Ja;Lee, Chan
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.519-524
    • /
    • 1996
  • Peptidylprolyl cis-trans isomerase (PPlase) catalyzes the cis-trans isomerization of prolyl peptide and facilitates the folding of cellular proteins and peptides. PPlase consists of two distinct immunophilins, each specifically binding to the immunosupressive drug cyclosporin A (CsA) or FK506, respectively. A PPlase was isolated and partially purified from porcine spleen. The molecular weight of porcine spleen PPlase was determined to be ~14,000 on the basis of SDS-PAGE. The purified enzyme was strongly inhibited by FK506, but not by CsA. The inhibition constant and the true concentration of enzyme preparations were determined by active site titration using the tight binding inhibitor FK506: $K_{i}=18.7$ nM and $E_{t}=172$ nM. The equilibrium ratio of conformer. [cis]/[trans], of prolyl peptide substrates (N-Suc-Ala-Xaa-Pro-Phe-p-NA) in anhydrous trifluoroethanol/LiCl solvent system varied from 0.24 to 0.85 depending on the nature of Xaa. Overall. in this solvent-salt system, the populations of the cis conformer of substrates in equilibrium are higher than in an aqueous solution so that the substantial error caused by high background absorption can be reduced. The reactivities of porcine spleen PPlase are shown to be highly sensitive to changes in the structure of substrates. Thus, $k_{cat}/K_m$ value for the most reactive substrate (Xaa Leu) is $4.007+10^{6}M^{1}s^{1}$ and, is 2,636 fold higher than that for the least reactive peptide substrate tested, Xaa=Glu.

  • PDF

Interaction Models of Substrate Peptides and β-Secretase Studied by NMR Spectroscopy and Molecular Dynamics Simulation

  • Lee, Jee-Young;Lee, Sung-Ah;Kim, Jin-Kyoung;Chae, Chi-Bom;Kim, Yangmee
    • Molecules and Cells
    • /
    • v.27 no.6
    • /
    • pp.651-656
    • /
    • 2009
  • The formation of ${\beta}$-amyloid peptide ($A{\beta}$) is initiated from cleavage of amyloid precursor protein (APP) by a family of protease, ${\alpha}$-, ${\beta}$-, and ${\gamma}$-secretase. Sub W, a substrate peptide, consists of 10 amino acids, which are adjacent to the ${\beta}$-cleavage site of wild-type APP, and Sub M is Swedish mutant with double mutations on the left side of the ${\beta}$-cleavage site of APP. Sub W is a normal product of the metabolism of APP in the secretary pathway. Sub M is known to increase the efficiency of ${\beta}$-secretase activity, resulting in a more specific binding model compared to Sub W. Three-dimensional structures of Sub W and Sub M were studied by CD and NMR spectroscopy in water solution. On the basis of these structures, interaction models of ${\beta}$-secretase and substrate peptides were determined by molecular dynamics simulation. Four hydrogen bonds and one water-mediated interaction were formed in the docking models. In particular, the hydrogen bonding network of Sub M-BACE formed spread over the broad region of the active site of ${\beta}$-secretase (P5-P3'), and the side chain of P2- Asn formed a hydrogen bond specifically with the side chain of Arg235. These are more favorable to the cleavage of Sub M by ${\beta}$-secretase than Sub W. The two substrate peptides showed different tendency to bind to ${\beta}$-secretase and this information may useful for drug development to treat and prevent Alzheimer's disease.

Bacillus subtilis 유래 Glycerol-3-phosphate Cytidylyltransferase의 화학적 수식

  • 박영서
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.173-177
    • /
    • 1997
  • Glycerol-3-phosphate cytidylyltransferase from Bacillus subtilis was modified with various chemical modifiers to determine the active sites of the enzyme. Treatment of the enzyme with group-specific reagents diethylpyrocarbonate, N-bromosuccinimide, or carbodiimide resulted in complete loss of enzyme activity, which shows histidine, tryptophan, and glutamic acid or aspartic acid residues are at or near the active site. In each case, inactivation followed pseudo first-order kinetics. Inclusion of glycerol-3-phosphate and/or CTP prevented the inactivation, indicating the presence of tryptophan and glutamic acid or aspartic acid residues at the substrate binding site. Analysis of kinetics of inactivation showed that the loss of enzyme activity was due to modification of a two histidine residues, single tryptophan residue, and two glutamic acid or aspartic acid residues.

  • PDF

Farnesyl Protein transferase의 분리, 유전자 재조합 및 발현연구

  • 백영진;유권열;박치욱;양철학
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.55-55
    • /
    • 1993
  • Farnesyl Protein transferase(FPT)는 발암유전자 ras의 단백질 산물인 p$^{21}$의 post-translational modification의 첫 단계인 ras-farnesylation에 관여하는 효소로 본 연구에서는 정제된 FPT와 E. coli에서의 발현 system을 이용하여 FPT의 구조와 기능을 밝히고 이를 FPT 방해제의 설계에 이용하고자 한다. Bovine testis에 존재하는 FPT를 30%-50%의 Ammonium sulfate로 fractionation하고, DEAE-Sephacel, Sephacryl S-300 column을 통과시킨 후 peptide(KKCVIM) affinity column을 이용하여 순수 정제하였다. 정제된 효소의 분자량은 gel-filtration에 의해 100KDa으로 추정되었고 SDS-PAGE 결과 49KDa과 46KDa의 두 subunit로 구성되었음이 확인되었다. 효소활성에는 $Mg^{2+}$$Zn^{2+}$가 필수적이며 최적 pH는 7.0이었다. Yeast의 FPT의 두 subunit 유전자는 Yeast genomic DNA를 template로 사용하고 각 subunit에 specific한 합성된 primer들과 vent polymerase를 이용하여 Polymerase chain reaction을 통하여 얻었다. 두 유전자를 pBluescriptII SK+ vector를 변형시킨 두 vector, pBSK+4와 pBChl+4에 재조합 시킨 후 E.coli에 transformation시켜 발현시켰다. 현재 정제된 Bovine FPT와 E. coli에서 발현된 Yeast FPT의 chemical modification과 site-directed mutagenesis를 통하여 FPT의 active site와 substrate binding site에 관한 연구를 진행시키고 있다.

  • PDF

Chemical Modification of Porcine Brain myo-Inositol Monophosphate Phosphatase by N-bromosuccinimide

  • Lee, Byung-Ryong;Bahn, Jae-Hoon;Jeon, Seong-Gyu;Ahn, Yoon-Kyung;Yoon, Byung-Hak;Kwon, Hyeok-Yil;Kwon, Oh-Shin;Choi, Soo-Young
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.294-298
    • /
    • 1999
  • Myo-inositol monophosphate phosphatase is a key enzyme in the phosphoinositide cell-signaling system. Incubation of myo-inositol monophosphate phosphatase from porcine brain with N-bromosuccinimide (NBS) resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo-first-order kinetics with the second-order rate constant of $3.8{\times}10^3\;M^{-1}min^{-1}$. The time course of the reaction was significantly affected by the substrate myo-inositol-1-phosphate, which afforded complete protection against the loss of catalytic activity. Spectrophotometric studies indicated that about one oxindole group per molecule of enzyme was formed following complete loss of enzymatic activity. It is suggested that the catalytic function of myo-inositol monophosphate phosphatase is modulated by the binding of NBS to a specific tryptophan residue at or near the substrate binding site of the enzyme.

  • PDF

Chemical Modification of Tryptophan Residue in Bovine Brain succinic Semlaldehyde Reductase

  • Hong, Joung-Woo;Jeon, Seong-Gyu;Bahn, Jae-Hoon;Park, Jin-Seu;Kwon, Hyeok-Yil;Cho, Sung-Woo;Choi, Soo-Young
    • Animal cells and systems
    • /
    • v.1 no.4
    • /
    • pp.583-587
    • /
    • 1997
  • Incubation of an NADPH-dependent succinic semialdehyde reductase from bovine brain with N-bromosuccinimide (NBS) resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo-first-order kinetics with the second-order rate constant of $6.8\times{10}^3$ $M^-1$ $min^{-1}$. The inactivation was prevented by preincubation of the enzyme with substrate succinic semialdehyde, but not with coenzyme NADPH. There was a linear relation-ship between oxindole formation and the loss of enzyme activity. Spectro-photometric studies indicated that about one oxindole group per molecule of the enzyme was formed following complete loss of enzymatic activity. It is suggested that the catalytic function of succinic semialdehyde reductase is modulated by binding of NBS to a specific tryptophan residue at or near the substrate binding site of the enzyme.

  • PDF

Crystal Structure and Molecular Mechanism of Phosphotransbutyrylase from Clostridium acetobutylicum

  • Kim, Sangwoo;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1393-1400
    • /
    • 2021
  • Acetone-butanol-ethanol (ABE) fermentation by the anaerobic bacterium Clostridium acetobutylicum has been considered a promising process of industrial biofuel production. Phosphotransbutyrylase (phosphate butyryltransferase, PTB) plays a crucial role in butyrate metabolism by catalyzing the reversible conversion of butyryl-CoA into butyryl phosphate. Here, we report the crystal structure of PTB from the Clostridial host for ABE fermentation, C. acetobutylicum, (CaPTB) at a 2.9 Å resolution. The overall structure of the CaPTB monomer is quite similar to those of other acyltransferases, with some regional structural differences. The monomeric structure of CaPTB consists of two distinct domains, the N- and C-terminal domains. The active site cleft was formed at the interface between the two domains. Interestingly, the crystal structure of CaPTB contained eight molecules per asymmetric unit, forming an octamer, and the size-exclusion chromatography experiment also suggested that the enzyme exists as an octamer in solution. The structural analysis of CaPTB identifies the substrate binding mode of the enzyme and comparisons with other acyltransferase structures lead us to speculate that the enzyme undergoes a conformational change upon binding of its substrate.

Contribution of Arginine 13 to the Catalytic Activity of Human Class Pi Glutathione Transferase P1-1

  • Kong, Ji-Na;Jo, Dong-Hyeon;Do, Hyun-Dong;Lee, Jin-Ju;Kong, Kwang-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2497-2502
    • /
    • 2010
  • Arg13 is a conserved active-site residue in all known Pi class glutathione S-transferases (GSTs) and in most Alpha class GSTs. To evaluate its contribution to substrate binding and catalysis of this residue, three mutants (R13A, R13K, and R13L) were expressed in Escherichia coli and purified by GSH affinity chromatography. The substitutions of Arg13 significantly affected GSH-conjugation activity, while scarcely affecting glutathione peroxidase or steroid isomerase activities. Mutation of Arg13 into Ala largely reduced the GSH-conjugation activity by approximately 85 - 95%, whereas substitutions by Lys and Leu barely affected activity. These results suggest that, in the GSH-conjugation activity of hGST P1-1, the contribution of Arg13 toward catalytic activity is highly dependent on substrate specificities and the size of the side chain at position 13. From the kinetic parameters, introduction of larger side chains at position 13 results in stronger affinity (Leu > Lys, Arg > Ala) towards GSH. The substitutions of Arg13 with alanine and leucine significantly affected $k_{cat}$, whereas substitution with Lys was similar to that of the wild type, indicating the significance of a positively charged residue at position 13. From the plots of log ($k_{cat}/{K_m}^{CDNB}$) against pH, the $pK_a$ values of the thiol group of GSH bound in R13A, R13K, and R13L were estimated to be 1.8, 1.4, and 1.8 pK units higher than the $pK_a$ value of the wild-type enzyme, demonstrating the contribution of the Arg13 guanidinium group to the electrostatic field in the active site. From these results, we suggest that contribution of Arg13 in substrate binding is highly dependent on the nature of the electrophilic substrates, while in the catalytic mechanism, it stabilizes the GSH thiolate through hydrogen bonding.

Effect of Sam Hwa San on Na-K-ATPase Activity in Microsomal Fraction of Rabbit Cerebral Cortex (삼화산(三和散)이 대뇌피질(大腦皮質) microsome분획(分劃)에서 Na-K-ATPase활성(活性)에 미치는 영향(影響))

  • Kim, Gil-Seop;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.16 no.1 s.29
    • /
    • pp.281-294
    • /
    • 1995
  • The effect of Sam Hwa San on the Na-K-ATPase activity was evaluated in microsomal fraction prepared from rabbit cerebral cortex to determine whether Sam Hwa San affects Na-K-ATPase activity of nervous system. Sam Hwa San markedly inhibited the Na-K-ATPase activity in a dose-dependent manner with an estimated $I_{50}$ of 0.12%. Optimal pH for the Na-K-ATPase activity was at 7.5 in the presence or absence of Sam Hwa San. The degree of inhibition by the drug more increased at acidic and alkalic pHs than neutral pH. Kinetic studies of substrate and cationic activation of the enzyme indicate classic noncompetitive inhibition fashion for ATP, Na and K, showing significant reduction in Vmax without a change in Km. Dithiothreitol, a sulfhydryl reducing reagent, partially protects the inhibition of Na-K-ATPase activity by Sam Hwa San. Combination of Sam Hwa San and ouabain showed higher inhibition than cumulative inhibition. These results suggest that Sam Hwa San inhibits Na-K-ATPase activity in central nervous system by reacting with, at least a part, sulfhydryl group and ouabain binding site of the enzyme protein, but with different binding site from those of ATP, Na and K.

  • PDF