DOI QR코드

DOI QR Code

Contribution of Arginine 13 to the Catalytic Activity of Human Class Pi Glutathione Transferase P1-1

  • Kong, Ji-Na (Biomolecular Chemistry Lab, Department of Chemistry, College of Sciences, Chung-Ang University) ;
  • Jo, Dong-Hyeon (Biomolecular Chemistry Lab, Department of Chemistry, College of Sciences, Chung-Ang University) ;
  • Do, Hyun-Dong (Biomolecular Chemistry Lab, Department of Chemistry, College of Sciences, Chung-Ang University) ;
  • Lee, Jin-Ju (Biomolecular Chemistry Lab, Department of Chemistry, College of Sciences, Chung-Ang University) ;
  • Kong, Kwang-Hoon (Biomolecular Chemistry Lab, Department of Chemistry, College of Sciences, Chung-Ang University)
  • Received : 2010.06.01
  • Accepted : 2010.07.13
  • Published : 2010.09.20

Abstract

Arg13 is a conserved active-site residue in all known Pi class glutathione S-transferases (GSTs) and in most Alpha class GSTs. To evaluate its contribution to substrate binding and catalysis of this residue, three mutants (R13A, R13K, and R13L) were expressed in Escherichia coli and purified by GSH affinity chromatography. The substitutions of Arg13 significantly affected GSH-conjugation activity, while scarcely affecting glutathione peroxidase or steroid isomerase activities. Mutation of Arg13 into Ala largely reduced the GSH-conjugation activity by approximately 85 - 95%, whereas substitutions by Lys and Leu barely affected activity. These results suggest that, in the GSH-conjugation activity of hGST P1-1, the contribution of Arg13 toward catalytic activity is highly dependent on substrate specificities and the size of the side chain at position 13. From the kinetic parameters, introduction of larger side chains at position 13 results in stronger affinity (Leu > Lys, Arg > Ala) towards GSH. The substitutions of Arg13 with alanine and leucine significantly affected $k_{cat}$, whereas substitution with Lys was similar to that of the wild type, indicating the significance of a positively charged residue at position 13. From the plots of log ($k_{cat}/{K_m}^{CDNB}$) against pH, the $pK_a$ values of the thiol group of GSH bound in R13A, R13K, and R13L were estimated to be 1.8, 1.4, and 1.8 pK units higher than the $pK_a$ value of the wild-type enzyme, demonstrating the contribution of the Arg13 guanidinium group to the electrostatic field in the active site. From these results, we suggest that contribution of Arg13 in substrate binding is highly dependent on the nature of the electrophilic substrates, while in the catalytic mechanism, it stabilizes the GSH thiolate through hydrogen bonding.

Keywords

References

  1. Mannervik, B.; Danielson, U. H. CRC Crit. Rev. Biochem. 1988, 23, 283. https://doi.org/10.3109/10409238809088226
  2. Fahey, R. C.; Sundquist, A. R. Adv. Enzymol. Rel. Areas Mol. Biol. 1991, 64, 1.
  3. Armstrong, R. N. Chem. Res. Toxicol. 1991, 4, 131. https://doi.org/10.1021/tx00020a001
  4. Armstrong, R. N. Chem. Res. Toxicol. 1997, 10, 2. https://doi.org/10.1021/tx960072x
  5. Mannervik, B.; Awasthi, Y. C.; Board, P. G.; Hayes, J. D.; Ilio, C.; Ketterer, B.; Listowsky, I.; Morgenstern, R.; Muramatsu, M.; Pearson, W. R.; Pickett, C. B.; Sato, K.; Widersten, M.; Wolf, C. R. Biochem. J. 1992, 282, 305.
  6. Ji, X.; Zhang, P.; Armstrong, R. N.; Gilliland, G. L. Biochemistry 1992, 31, 10169. https://doi.org/10.1021/bi00157a004
  7. Ji, X.; Von Rosenvinge, E. C.; Johnson, W. W.; Tomarev, S. I.; Piatigorsky, J.; Armstrong, R. N.; Gilliland, G. L. Biochemistry 1995, 34, 5317. https://doi.org/10.1021/bi00016a003
  8. Reinemer, P.; Dirr, H. W.; Ladenstein, R.; Schäffer, J.; Gallay, O.; Huber, R. EMBO J. 1991, 10, 1997.
  9. W.; Huber, R.; Gilliland, G. L.; Armstrong, R. N.; Ji, X.; Board, P. G.; Olin, B.; Mannervik, B.; Jones, T. A. J. Mol. Biol. 1993, 232, 192. https://doi.org/10.1006/jmbi.1993.1376
  10. Wilce, M. C. J.; Board, P. G.; Feil, S. C.; Parker, M. W. EMBO J. 1995, 14, 2133.
  11. Reinemer, P.; Dirr, H. W.; Ladenstein, R.; Huber, R. J. Mol. Biol. 1992, 217, 214.
  12. Ji, X.; Tordova, M.; O’Donnell, R.; Parsons, J. F.; Hayden, J. B.; Gilliland, G. L.; Zimniak, P. Biochemistry 1997, 36, 9690. https://doi.org/10.1021/bi970805s
  13. Ji, X.; Blaszczyk, J.; Xiao, B.; O’Donnell, R.; Hu, X.; Herzog, C.; Singh, S. V.; Zimniak, P. Biochemistry 1999, 38, 10231. https://doi.org/10.1021/bi990668u
  14. Koh, J.-U.; Cho, H.-Y.; Kong, K.-H. Bull. Korean Chem. Soc. 2007, 28, 772. https://doi.org/10.5012/bkcs.2007.28.5.772
  15. Schramm, V. L.; McCluskey, R.; Emig, F. A.; Litwack, G. J. Biol. Chem. 1984, 259, 714.
  16. Kano, T.; Sakai, M.; Muramatsu, M. Cancer Res. 1987, 47, 5626.
  17. Kong, K.-H.; Inoue, H.; Takahashi, K. Biochem. Biophys. Res. Commun. 1991, 181, 748. https://doi.org/10.1016/0006-291X(91)91254-A
  18. Habig, W. H.; Jakoby, W. B. Methods Enzymol. 1981, 77, 398. https://doi.org/10.1016/S0076-6879(81)77053-8
  19. Flohe, L.; Günzler, W. A. Methods. Enzymol. 1985, 105, 114.
  20. Parker, M. W.; Bello, M. L.; Federici, G. J. Mol. Biol. 1990, 213, 221. https://doi.org/10.1016/S0022-2836(05)80183-4
  21. Chen, W.-L.; Haieh, J.-C.; Hong, J.-L.; Tsai, S.-P.; Tam, M. F. Biochem. J. 1992, 286, 205.
  22. Kong, K.-H.; Takasu, K.; Inoue, H.; Takahashi, K. Biochem. Biophys. Res. Commun. 1992, 184, 194. https://doi.org/10.1016/0006-291X(92)91177-R
  23. Tsuchida, S.; Sato, K. CRC Crit. Rev. Biochem. Mol. Biol. 1992, 27, 337. https://doi.org/10.3109/10409239209082566
  24. Hayes, J. D.; Pulford, D. J. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 445. https://doi.org/10.3109/10409239509083491
  25. Morgan, A. S.; Ciaccio, P. J.; Tew, K. D.; Kauvar, L. M. Cancer Chemother. Pharmacol. 1996, 37, 363. https://doi.org/10.1007/s002800050398
  26. Mannervik, B. Adv. Enzymol. Rel. Areas Mol. Biol. 1985, 57, 357.
  27. Ketterer, B.; Tan, K. H.; Meyer, D. J.; Coles, B. In Glutahtione STransferase and Carcinogenesis; Taylor & Frabcis: London, 1987; p 149.
  28. Nishihira, J.; Ishibashi, T.; Sakai, M.; Tsuda, S.; Hikichi, K. Arch. Biochem. Biophys. 1993, 302, 128. https://doi.org/10.1006/abbi.1993.1190
  29. Oakley, A. J.; Rossjohn, J.; Bello, M. L.; Caccuri, A. M.; Federici, G.; Paker, M. W. Biochemistry 1997, 36, 576. https://doi.org/10.1021/bi962316i
  30. Bjornestedt, R.; Stenberg, G.; Widersten, M.; Board, P. G.; Sinning, I.; Jones, T. A.; Mannervik, B. J. Mol. Biol. 1995, 765.

Cited by

  1. A Plant-specific Tau Class Glutathione S-transferase from Oryza sativa Having Significant Detoxification Activity Towards Chloroacetanilide Herbicides vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3756
  2. Characterization of Two Site-Specifically Modified Human Dihydrolipoamide Dehydrogenase Mutants (Pro-282 to Ala and Pro-298 to Ala) vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1119
  3. Characterization of a Naturally Occurring Mutation (Ile-358 to Thr) in Human Dihydrolipoamide Dehydrogenase of a Patient with Leigh Syndrome vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1445
  4. Engineering High Catalytic Efficiency of the Steroid Isomerase Activity of Human Glutathione S-transferase P1-1 vol.34, pp.2, 2013, https://doi.org/10.5012/bkcs.2013.34.2.645
  5. Characterization of Three Site-specific Mutations in Human Dihydrolipoamide Dehydrogenase (Gly-42 to Ala, Gly-43 to Ala and Val-48 to Trp) vol.32, pp.12, 2010, https://doi.org/10.5012/bkcs.2011.32.12.4427
  6. Characterization of Two Naturally Occurring Mutations (Gly-101 Deletion and Glu-340 to Lys Substitution) in Human Dihydrolipoamide Dehydrogenase of a Patient with Metabolic Acidosis vol.33, pp.8, 2012, https://doi.org/10.5012/bkcs.2012.33.8.2477