• Title/Summary/Keyword: substituents of NaCl

Search Result 9, Processing Time 0.017 seconds

X-ray Structure and Electrochemical Properties of Ferrocene-Substituted Metalloporphyrins

  • Kim, Jin Won;Lee, Seok U;Na, Yong Hwan;Lee, Gi Pyeong;Do, Yeong Gyu;Jeong, Se Chae
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1316-1322
    • /
    • 2001
  • Transition metal complexes of novel mono- and di-ferrocene-substituted porphyrins have been synthesized and characterized by structural and electrochemical methods. The X-ray structures of Mn(FPTTP)Cl and Mn(DFTTP)Cl showed the distorted square pyramidal coordination geometry with syn configuration of chloride and ferrocenyl substituents. The electrochemistry of ferrocene-substituted porphyrins and their metal complexes has been determined to elucidate the ${\pi}-conjugation$ effect of the porphyrin ring. The ferrocenyl group of H2FPTTP underwent a reversible one-electron transfer process at 0.30 V, indicating the good electron donating effect of the phorphyrin ring to the ferrocene substituent. The redox potential of the ferrocenyl subunit and porphyrin ring was affected by the central metal ions of the metalloporphyrins, that is, Zn(II) and Ni(II) made the oxidation of ferrocene much easier and Mn(III) made it harder. The ferrocene subunits of H2DFTTP interacted electrochemically with each other with peak splitting of 0.21 V. The strength of the electrochemical interactions between the two ferrocenyl substituents can be controlled by central metal ions of metalloporphyrins.

Synthesis and Characterization of Thermosensitive Poly(organophosphazenes) with Methoxy-Poly(ethylene glycol) and Alkylamines as Side Groups

  • Lee, Bae-Hoon;Lee, Young-Moo;Sohn, Yoon-Soo;Song, Soo-Chang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.549-554
    • /
    • 2002
  • Thermosensitive poly(organophosphazenes) bearing methoxy-poly(ethylene glycol) (MPEG) and alkylamines as substituents have been synthesized and characterized by elemental analysis, NMR spectroscopy, GPC, and DSC. All the polymers exhibited crystallinity, which was probably induced by the MPEG side chain of the polymers. All the polymers exhibited the lower critical solution temperature (LCSTs) in the range of 28 to $94^{\circ}C$ depending on several factors such as mole ratio of the substituents, kinds of PEG and alkylamines. The higher content of MPEG and shorter chain length of alkylamines of the polymers afforded the higher LCST. The LCSTs of the polymers exhibited almost concentration-independent behavior in the range of 3-30 wt % of the polymers in aqueous solutions. The polymers showed the higher LCSTs in the acidic solutions than in the neutral and basic solutions. The ionic strength of the polymer solution affected the LCST, which decreased with increased NaCl concentration. The polymer bearing almost equimolar substitutuents with the -N-P-N- unit has shown the LCST more sensitive to NaCl and pH than that with the -N-P-O- unit. The polymers were found to degrade in acidic solution but be very stable in alkali solution as well as in the buffer solution of pH 7.4.

The Effect of Sodium Chloride on the Quality of Cheese and Upcoming Technologies for Manufacturing Reduced-Sodium Cheeses: A Review (Sodium Chloride가 치즈의 품질에 미치는 영향과 저염치즈 개발 기술: 총설)

  • Chon, Jung-Whan;Kim, Hyun-Sook;Kim, Dong-Hyeon;Kim, Hong-Seok;Song, Kwang-Young;Jeong, Dong-Gwan;Kim, Soo-Ki;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.47-57
    • /
    • 2015
  • Sodium is an essential nutrient with very important functions, including regulation of the extracellular fluid volume and active transport of molecules across the cell membranes. Since high levels of dietary sodium are associated with a high prevalence of hypertension, prehypertension, and other adverse effects on health, many national and international health organizations (WHO, FAO, etc.) recommend that sodium intake should be significantly decreased. In developed nations, cheese products, from among many processed foods, can cause high salt intake. Hence, there is an urgent need to reduce the content of salt in cheese processing, using various substitutes of sodium chloride (NaCl). In general, salt (NaCl) has been used as a food preservative to limit and (or) kill the growth of foodborne pathogens and spoilage organisms by decreasing the water activity, and to improve texture and flavor. To maintain public health, the salt content in cheese should be decreased without influencing the physicochemical properties of cheese. Therefore, the objective of this review is to outline the upcoming technologies used to reduce the salt content in different types of cheese using various substitutes.

  • PDF

Kinetic Investigation of Olefin Oxidation by Al(III)-Porphyrin Complexes (Al(lll)-Porphyrin착물에 의한 올레핀 산화반응 메카니즘 연구)

  • Na, Hun-Gil;Han, Man-So
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.1
    • /
    • pp.46-52
    • /
    • 2006
  • studies of olefin oxidation using Al(III)-porphyrin complexes as catalyst are investigated in CH2Cl2, in which NaClO is used as terminal oxidant. Porphyrins are TPP(5,10,15,20-Tetraphenylporphyrin) and (p-X)TPP(X=CH3O, CH3, F, Cl). Olefins are styrene and (p-X)styrene (X=CH3O, CH3, Cl, Br). The values of Km and Vmax are calculated from the Michaelis-Menten equation. According to the substituents of substrate and catalyst, kinetic parameters will be measured. Investigating the correlation between the Michaelis-Menten rate parameters and the substituent constants, we were able to analyze the influence on the changes of catalytic activity or the rate determining step during the process of the formation and the dissociation of the M-oxo-olefin.

Iridium(Ⅲ) Complexes of η$^6$-Arenes with Olefinic and Cyclopropyl Substituents: Facile Conversion to η ³-henylallyl Complexes

  • 정현목;주광석;진종식
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.402-405
    • /
    • 1997
  • Olefinic and cyclopropyl group substituted arenes (C6H5Y) react with [Cp*Ir(CH3COCH3)3]A2 (A=ClO4-, OTf-) to give η6-arene complexes, [Cp*Ir(η6-C6H5Y)]2+ (1a: Y=-CH=CH2 (a),-CH=CHCH3 (b),-C(CH3)=CH2 (c),-CH-CH2-CH2 (d)). Complex 1b-1d are readily converted into η3-allyl complexes, [Cp*(CH3CN)Ir(η3-CH(C6H5)CHCH2)]+ (2a) and [Cp*(CH3CN)Ir(η3-CH2(C6H5)CH2)]+ (2b), in the presence of Na2CO3 in CH3CN. The η6-styrene complex, 1a reacts with NaBH4 to give η5-cyclohexadienyl complex, [Cp*Ir(η5-C6H6-CH=CH2)]+ (3), while with H2 it gives η6-ethylbenzene complex [Cp*Ir(η6-C6H5CH2CH3)]2+ (4). Complex 1a and 1c react with HCl to give [Cp*Ir(η6-C6H5CH2CH2Cl)]2+ (5a) and [Cp*Ir(η6-C6H5CH(CH3)CH2Cl]2+ (5b), respectively.

Thermodynamic Study on the Solubilization of p-Halogenated Phenol Derivatives in TTAB Solution (TTAB 수용액에서 p-할로겐화 페놀유도체들의 가용화에 대한 열역학적 연구)

  • Lee, Byung-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.20-26
    • /
    • 2014
  • The interaction of p-halogenated phenol derivatives with the micellar system of tetradecyltrimethylammonium bromide (TTAB) was studied by the UV/Vis spectrophotometric method. Effects of substituents, additives, and temperatures on the solubilization of phenol derivatives have been measured. The results show that all the values of ${\Delta}G^o$ and ${\Delta}H^o$ were negative and the values of ${\Delta}S^o$ were positive for all phenol derivatives within the measured temperature range. The calculated thermodynamic parameters depended on the size, the electro-negativity, and the hydrophobic property of halogen substituents. The addition of n-butanol results in the decrement in tthe Ks values and the addition of NaCl caused the increment in the Ks values for all the phenol derivatives. From these changes we can postulate that the solubilization sites of the phenol derivatives in the micelle depend severely on properties of the halogen-substituent.

Physico-Chemical and Rheological Properties of a Bioflocculant BF-56 from Bacillus sp. A56

  • Suh, Hyun-Hyo;Moon, Seong-Hoon;Seo, Weon-Taek;Kim, Kyung-Kab;Jeon, Gee-Ill;Park, Hyun-Geoun;Park, Yong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.209-216
    • /
    • 2002
  • Bacillus sp. A56 was studied, because of its high flocculating activity. The flocculating substance produced by this strain was purified by ethanol precipitation, cetylpyridinium chloride (CPC) precipitation, and gel permeation chromatography (GPC). The FT-IR spectrum of the purified bioflocculant, designated as BF-56, showed typical characteristics of polysaccharides. The non-sugar substituents, and sugar components of BF-56 containing glucose, fucose, glucuronic acid, and galactose in an approximate molar ratio of 2.76:1.10:1:0.12, suggested that it was a novel bioflocculant with an estimated molecular mass of over $7{\times}10^3$ kDa. Rheological analysis of BF-56 revealed that it was a pseudoplastic that had higher apparent viscosity rate at dilute concentrations than those of zooglan. The solution of bioflocculant BF-56 exhibited non-Newtonian characteristics and it was compatible to high concentrations of salts such as KCl, NaCl, $CaCl_2,\;or\;FeCl_3.$ The present results suggested strong possibility of bioflocculant BF-56 to be fully applicable to industries such as wastewater treatment.

Oxidation of Dibenzyl Sulfide via an Oxygen Transfer from Palladium Nitrate

  • WhangPark, Young-ae;Na, Yong-Ho;Baek, Du-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2023-2027
    • /
    • 2006
  • Dibenzyl sulfide was oxidized at the a-carbon to yield benzaldehyde in the presence of $Pd(NO_3)_2$. Oxygen itself could not oxidize the sulfide directly, instead the nitrato ligand of the palladium complex transferred oxygen to dibenzyl sulfide to form benzaldehyde. The X-ray crystal structure of the intermediate complex, cis-[$Pd(NO_3)_2${$S(CH_2C_6H_5)_2$}$_2$], revealed that the nitrato ligand was unidentate. Para-substituted dibenzyl sulfides I, $(YC_6H_4CH_2)_2S $wherein Y = $OCH_3$, $CH_3$, Cl, CN, or $NO_2$, were synthesized and reacted with palladium nitrate, and those with electron-donating substituents (Y = $OCH_3$ and $CH_3$) were good substrates for the oxidation reaction with palladium nitrate. Thus, the reaction mechanism of the oxygen transfer was proposed to include nucleophilic benzylic carbon.

Synthesis and Catalytic Activity of Water-Soluble Iridium-Sulfonated Triphenylphosphine Com;lex. Hydration of Nitriles

  • 진종식;김상열;주광석;원경식;종대성
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.535-538
    • /
    • 1999
  • Five coordinated water-soluble iridium(l) complex, IrH(CO)(TPPTS)3 (1) (TPPTS = P(m-C6H4SO3Na)3-xH2O) has been prepared from the reaction of IrCl3·3H2O with TPPTS and HCHO in H2O/EtOH solution. Complex 1 catalyzes the hydration of nitrites (RC ≡ N, R = CH3, CICH2, CH3(CH2)4, Ph) in aqueous solution to give the corresponding amides (RCONH2) at 100℃. The hydration of unsaturated nitrites (R'C ≡ N, R'=CH3CH=CH, CH3OCH=CH, trans-PhCH=CH, CH2=C(CH3)) takes place regioselectively on-C ≡ N group to give unsaturated amides (R'CONH2) leaving the olefinic group intact. The yields of the amides seem to be depending on the electrophilicity of the carbon of nitrile: The more the electron withdrawing ability of the substituents on nitrites, the more amides are obtained. The hydration of dinitriles (NC-R-CN, R=(CH2)4, (CH2)6) with complex 1 initially gives mono-hydration products (NC-R-CONH2) which are slowly hydrated further to give dihydration products (H2NCO-R-CONH2). The hydration of 1,4-dicyanobutane has been found to be somewhat faster than that of 1,6-dicyanohexane.