DOI QR코드

DOI QR Code

Thermodynamic Study on the Solubilization of p-Halogenated Phenol Derivatives in TTAB Solution

TTAB 수용액에서 p-할로겐화 페놀유도체들의 가용화에 대한 열역학적 연구

  • Lee, Byung-Hwan (Department of Applied Chemical Engineering, Korea University of Technology & Education)
  • 이병환 (한국기술교육대학교 응용화학공학과)
  • Received : 2013.07.17
  • Accepted : 2013.10.11
  • Published : 2014.02.10

Abstract

The interaction of p-halogenated phenol derivatives with the micellar system of tetradecyltrimethylammonium bromide (TTAB) was studied by the UV/Vis spectrophotometric method. Effects of substituents, additives, and temperatures on the solubilization of phenol derivatives have been measured. The results show that all the values of ${\Delta}G^o$ and ${\Delta}H^o$ were negative and the values of ${\Delta}S^o$ were positive for all phenol derivatives within the measured temperature range. The calculated thermodynamic parameters depended on the size, the electro-negativity, and the hydrophobic property of halogen substituents. The addition of n-butanol results in the decrement in tthe Ks values and the addition of NaCl caused the increment in the Ks values for all the phenol derivatives. From these changes we can postulate that the solubilization sites of the phenol derivatives in the micelle depend severely on properties of the halogen-substituent.

양이온성 계면활성제인 tetradecyltrimethylammonium bromide (TTAB) 수용액에서 p-할로겐화 페놀유도체들의 가용화현상을 UV/Vis 분광광도법을 이용하여 연구하였다. 가용화현상에 미치는 치환기, 첨가제 및 온도의 효과를 조사하였다. 모든 페놀유도체의 가용화에 대한 ${\Delta}G^o$${\Delta}H^o$ 값은 측정범위 내에서 모두 음의 값을 나타내었으며, ${\Delta}S^o$ 값은 모두 양의 값을 나타내었다. 특히 이들 열역학 함수값들은 할로겐 치환기의 크기, 전기음성도 및 소수성에 크게 영향을 받았다. n-부탄올 첨가제는 모든 페놀유도체의 가용화를 감소시켰으며, NaCl 첨가제는 오히려 가용화를 촉진시켰다. 이런 결과들로부터 페놀유도체들은 치환기의 성질에 따라 미셀 내에서 가용화되는 위치가 서로 다름을 알 수 있었다.

Keywords

References

  1. B. H. Lee, S. D. Christian, E. E. Tucker, and J. F. Scamehorn, Substituent group effects on the solubilization of polar aromatic solutes (phenols, anilines, and benzaldehydes) by N-hexadecylpyridinium chloride, J. Phys. Chem., 95, 360-365 (1991). https://doi.org/10.1021/j100154a065
  2. J. Luczak, C. Jungnickel, M. Markiewicz, and J. Hupka, Solubilization of benzene, toluene, and xylene (BTX) in aqueous micellar solutions of amphiphilic imidazolinium ionic liquids, J. Phys. Chem. B, 117, 5653-5658 (2013). https://doi.org/10.1021/jp3112205
  3. R. Bradbury, J. Penfold, R. K. Thomas, I. M. Tucker, J. T. Petkov, and C. Jones, Adsorption of model perfumes at the air-solution interface by Coadsorption with an anionic surfactant, Langmuir, 29, 3361-3369 (2013). https://doi.org/10.1021/la400089s
  4. K. Sakai, K. Normura, R. G. Shrestha, T. Endo, K. Sakamoto, H. Sakai, and M. Abe, Wormlike micelle formation by acylglutamic acid with alkylamines, Langmuir, 28, 17617-17622 (2012). https://doi.org/10.1021/la303745p
  5. M. Take'uchi and Y. Moroi, Solubilization of n-alkylbenzenes into lithium 1-perfluoroundecanoate micelles, J. Colloid Interface Sci., 197, 230-235 (1998). https://doi.org/10.1006/jcis.1997.5287
  6. N. M. Lee and B. H. Lee, Mixed micellization of TTAB with other surfactants (DTAB, CTAB, Tween-20, Tween-40, and Tween-80), J. Kor. Chem. Soc., 56, 1-7 (2012).
  7. N. M. Lee and B. H. Lee, Solubilization of para-halogenated benzoic acid isomers by the solution of tetradecyltrimethylammonium bromide, Appl. Chem. Eng., 22, 473-478 (2011).
  8. R. Chaghi, L. C. de Menorval, C. Charnay, G. Derrien, and J. Zajac, Competitive solubilization of phenol by cationic surfactant micelles in the range of low additive and surfactant concentrations, Langmuir, 25, 4868-4874 (2009). https://doi.org/10.1021/la803451q
  9. B. Samiey and Z. Dalvand, Kinetics of Methyl Green fading in the presence of TX-100, DTAB and SDS, Bull. Korean Chem. Soc., 34, 1145-1152 (2013). https://doi.org/10.5012/bkcs.2013.34.4.1145
  10. W. Muller, C. Dejugnat, T. Zemb, J. Dufreche, and O. Diat, How do anions affects self-assembly and solubility of cetylpyridinium surfactants in water, J. Phys. Chem. B, 117, 1345-1356 (2013). https://doi.org/10.1021/jp3093622
  11. T. Mehling, L. Kloss, T. Ingram, and I. Smirnova, Partition coefficients of ionizable solutes in mixed nonionic/ionic micellar system, Langmuir, 29, 1035-1044 (2013). https://doi.org/10.1021/la304222n
  12. H. Wang, Q. Feng, J. Wang, and H. Zhang, Salt effect on the aggregation behavior of 1-decyl-3-methylimidazolium bromide in aqueous solution, J. Phys. Chem. B, 114, 1380-1387 (2010). https://doi.org/10.1021/jp910903s
  13. T. S. Banipal, A. K. Sood, and K. Singh, Micellization behavior of the 14-2-14 gemini surfactant with some conventional surfactants at different temperature, J. Surfact. Deter., 14, 235-244 (2011). https://doi.org/10.1007/s11743-010-1217-4
  14. N. M. Lee and B. H. Lee, Solubilization of 4-alkylbenzoic acid isomers by the aqueous solution of tetradecyltrimethylammonium bromide, J. Kor. Chem. Soc., 56, 188-194 (2012). https://doi.org/10.5012/jkcs.2012.56.2.188
  15. B. H. Lee, Solubilization of monochlorophenol isomers by the aqueous solution of tetradecyltrimethylammonium bromide, Appl. Chem. Eng., 21, 337-342 (2010).
  16. M. Khimani, R. Ganguly, V. K. Aswal, and P. Bahadur, Solubilization of parabens in aqueous pluronic solutions: Investigating the micellar growth and interaction as a function of paraben composition, J. Phys. Chem. B, 116, 14943-14950 (2012). https://doi.org/10.1021/jp308738s
  17. M. Sammalkorpi, M. Karttunen, and M. Haatoja, Ionic surfactant aggregates in saline solutions: Sodium dodecyl sulfate (SDS) in the presence of excess sodium chloride (NaCl) or calcium chloride ($CaCl_2$), J. Phys. Chem. B, 113, 5863-5870 (2009). https://doi.org/10.1021/jp901228v
  18. I. J. Park and B. H. Lee, Mixed micellization of sodium dodecylbenzene sulfonate with polyoxyethylene lauryl ether sulfactants (POLE 4 and POLE 23) in n-butanol aqueous solution, J. Surfact Deterg, 15, 41-46 (2012). https://doi.org/10.1007/s11743-011-1287-y
  19. K. Gharanjig, M. S. Kiakhani, A. R. T. Bagha, A. Khosravi, and F. M. Menger, Solubility of two disperse dyes derived from N-alkyl and N-carboxylic acid naphthalimides in the presence of gemini cationic surfactants, J. Surfact. Deterg., 14, 381-389 (2011). https://doi.org/10.1007/s11743-011-1253-8
  20. S. Mahajan, R. Sharma, and R. K. Mahajan, An investigation of drug binding ability of a surface active ionic liquid: Micellization, electrochemical, and spectroscopic studies, Langmuir, 28, 17238- 17246 (2012). https://doi.org/10.1021/la303193n
  21. T. L. Su, C. C. Lai, and P. C. Tsai, Interactions and solubilization of disperse dye with modified gemini surfactants: Investigation using the Taguchi method, J. Surfact. Deterg., 14, 363-369 (2011). https://doi.org/10.1007/s11743-011-1266-3
  22. R. Ganguly, K. Kuperkar, P. Parekh, V. K. Aswal, and P. Bahadur, Phenol solubilization in aqueous pluronic solutions : Investigating the micellar growth and interaction as a function of pluronic composition, J. Colloid Interface Sci., 378, 118-124 (2012). https://doi.org/10.1016/j.jcis.2012.04.034

Cited by

  1. Effects of NaCl and n-Butanol on the Solubilization of 4-Halogenated Phenols in Aqueous Solution of TTAB vol.58, pp.6, 2014, https://doi.org/10.5012/jkcs.2014.58.6.517
  2. Lauryl Sulfobetaine과 혼합계면활성제에 의한 4-클로로벤조산의 가용화에 대한 연구 vol.31, pp.4, 2014, https://doi.org/10.12925/jkocs.2014.31.4.612