• Title/Summary/Keyword: substituent effect

Search Result 271, Processing Time 0.019 seconds

A Study for the Effect of Solvent and Temperature on the Retention Behavior of Phenols in Reversed-Phase Liquid Chromatography (역상 액체 크로마토그래피에서 페놀류의 머무름거동에 미치는 용매와 온도의 영향에 관한 연구)

  • Lee Dai Woon;Lee Hoo Keun;Yook Keun Sung;Lee, In Ho;Cho Byung Yun
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.5
    • /
    • pp.503-512
    • /
    • 1993
  • The purpose of this study was to investigate the retention behavior of phenols and to predict their retention in RPLC. The retention data of twenty-five phenols were measured on a $\mu-{Bondapak}\;C_{18}$ and a polymeric $C_{18}$ columns with methanol-water and acetonitrile-water as a mobile phase. From the observation of enthalpy-entropy compensation phenomenon, the following conclusions are drawn with regard to the retention mechanism: 1) the retention mechanism of nitrophenols in different from that of metheyl-and chlorophenols in both mobile phase; 2) in methanol-water mobile phase, the retention mechanism of methyl-and chlorophenols is consistent in the range of methanol-water composition; 3) on the other hand, in the case of acetonitrile-water mobile phase, the retention mechanism depends on the volume fraction of acetonitrile. It means that the retention mechanism can not be explained only by a simple interaction. Based on retention data as compared with two columns, it may be said that the hydrophobic interaction of phenols with polymeric $C_{18}$ column was greater than that with monomeric $C_{18}$ column. The equations for predicting the retention of phenols were derived by using hydrophobic substituent constant $(\pi)$ and the sum of Hammett's constant $(\sigma)$ and Taft's steric constant $(E_s)$.

  • PDF

The Effect of Substituents on LC Behavior of Bis(p-substituted phenyl) 2-Decyloxyterephthalate (Bis(p-substituted phenyl) 2-decyloxyterephthalate의 액정 특성에 대한 치환기 효과)

  • Park, Joo-Hoon;Lee, Jong-Kyu;Choi, Ok-Byung;So, Bong-Keun;Lee, Soo-Min;Lee, Jun-Woo;Jin, Jung-Il
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.2
    • /
    • pp.127-137
    • /
    • 2000
  • Eleven new compounds that are composed of bis(p-substituted phenyl) terephthalate unitand the decyloxy pendant as lateral were synthesized and their thermal and liquid crystalline properties were studied by the differential scanning calorimetry (DSC) and on a hot-stage of a polarizing microscope. The ter-minal substituent groups of the compound were varied; X= -H(II-H), -F(lI-F), -CII(II-CI), -Br(ll-Br), -I(II-I), -$NO_2(lI-NO_2$), $-CF_3(II-CF_3$), -$OC_2H_5(II-OC_2H_5$), -$OC_4H_9(II-OC_4H_9$), -$C_6H_5(Il-C_6H_5$). The compounds of $II-OC_2H_5,\;II-OC_4H_9$ and $II-C_6H_5$ were monotropically nematic. In contrast, the compounds of Il-H, II-F, II-Cl, II-Br, II-I, $lI-NO_2$, $II-CF_3$, and II-CN did not show liquid crystalline properties.

  • PDF

Substitution Effect of Enzymatically Hydrolyzed Purple Sweet Potato Powder on Skim Milk in Yogurt Preparation (요구르트 제조에서 자색 고구마 효소 분해물의 탈지분유 대체 효과)

  • Kim, Dong Chung;Won, Sun Im;In, Man-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.4
    • /
    • pp.311-316
    • /
    • 2015
  • Yogurt was prepared with different substitution ratio [10, 30, and 50% (w/w)] of skim milk with enzymatically hydrolyzed purple sweet potato powder (EHPSPP) and fermented at $40^{\circ}C$ for 15 h. Fermentation characteristics and antioxidant activities of the yogurt were evaluated in terms of acid production (pH and titratable acidity) and lactic acid bacterial counts and DPPH radical scavenging activity, respectively. After 15 h fermentation, titratable acidity of EHPSPP yogurt was 0.80-0.89% and was lower than that (0.93%) of yogurt made without EHPSPP. The acid production and the number of viable lactic acid bacterial cell decreased with increasing the substitution ratio. The sensory score of EHPSPP yogurt prepared with 30% substitution ratio showed the highest values in taste and overall acceptability among the tested yogurt preparations. DPPH radical scavenging activity increased with increasing the substitution ratio in yogurt fermented for 12 h. The total phenolic content of 30% EHPSPP yogurt was 40% higher than that of skim milk yogurt. These results suggest that EHPSPP can be used as substituent of skim milk and the optimum substitution ratio is around 30%.

Quantitative structure-activity relationships for the growth inhibition activity of the herbicidal 3-phenyl-5-(3,7-dichloro-8-quinolinyl)-1,2,4-oxadiazole derivatives (제초성 3-Phenyl-5-(3,7-dichloro-8-quinolinyl)-1,2,4-oxadiazole 유도체들의 정량적인 구조와 생장 저해 활성과의 관계)

  • Sung, Nack-Do;Lee, Sang-Ho;Kim, Hyoung-Rae;Song, Jong-Hwan
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.279-286
    • /
    • 2002
  • To improve the growth inhibition activities and selectivities for quinclorac family, novel 3-substituted phenyl-5-(3,7-dichloro-8-quinolinyl)-1,2,4-oxadiazole derivatives as the substrate were synthesized and their the activities ($pI_{50}$) against shoot and root of rice plant (Oryza sativa L.) and barn-yard grass (Echinochloa crus-galli) were measured. And the quantitative structure-activity relationships (QSARs) between physicochemical parameters of the substitutents (R) on phenyl group and the activities ($pI_{50}$) were analyzed quantitatively. According to the SAR analyses, the substrates of planar conformation showed higher herbicidal activities against barnyard grass than rice plant. The activities against rice plant depend on the electronic effect (shoots: ${\sigma}_{opt.}=0.49$ & root: $R_{opt.}=-0.15$) of substituents, whereas the activities against shoots and roots of barnyard grass depend on hydrophobicity (${\pi}_{opt.}=0.37{\sim}2.40$). There were conditions of selective growth inhibition activity against barnyard grass when such a ortho-substituted electron donating substituents showing the hydrophobicity value, ${\pi}=2.40$ were introduced on the phenyl ring. The 2-tolyl substituent predicted from SAR equations was expected to have better growth inhibition activity and selectivity (${\Delta}pI_{50}=1.26$) for barnyard grass.

Quantitative Structure Activity Relationship (QSAR) Analyses on the Farnesyl Protein Transferase Inhibition Activity of Hetero Ring Substituted Chalcone Derivatives by the Hansch and Free-Wilson Method (Hansch와 Free-Wilson 방법에 의한 헤테로 고리 치환 chalcone 유도체들의 farnesyl protein transferase 저해활성에 대한 정량적 구조 활성 관계(QSAR) 의 분석)

  • Yu, Seong-Jae;Myung, Pyung-Keun;Kwon, Byung-Mok;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.95-99
    • /
    • 2000
  • A series of hetero ring (X) substitued chalcone derivatives with farnesyl protein transferase (FPTase) inhibition activities $(pI_{50})$ values determined in vitro is analyzed by modified Free-Wilson (F-W) and Hansch method for quantitative structure activity relationship (QSARs). On the basis of F-W analysis on the FPTase inhibitory activity of a training set of the compounds, none of the (X)-substituents were not contribute the activity. But the net charge of ${\alpha}$ carbon atom is contribute the activity than that of ${\beta}$ carbon atom. And the relative orders of the (Y)-substituents on the activity are ortho>meta>para-substituents. According to Hansch approach, the activities would depend largely on the optimal, $(R_{opt.}=-0.35)$ resonance effect with ortho substituted $(I_o>0)$ electron donating group (R<0) and STERIMOL parameter, $B_1$ constant. The inhibition activity between hetro ring substituents have been a proportioned with each others and none substituent(H), 45 showed the highest FPTase inhibition $(pI_{50}=4.30)$ activity.

  • PDF

Effects of Structure of the Bridge on Polymerization Behavior of Dinuclear Constrained Geometry Catalysts and Properties of Ethylene-Styrene Copolymers (다리리간드의 구조가 이핵 CGC의 중합 특성과 생성된 에틸렌/스티렌 공중합체에 미치는 영향)

  • Pham, Nhat Thanh;Nguyen, Thi Dieu Huyen;Thanh, Nguyen Thi Le;Noh, Seok-Kyun
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.77-86
    • /
    • 2011
  • Polymerization properties of six dinuclear constrained geometry catalysts (DCGC) were investigated. The different length bridges of three catalysts were para-phenyl (Catalyst 1), para-xylyl (Catalyst 2), and para-diethylene phenyl (Catalyst 6). The other three DCGC have the same para-xylyl bridge with the different substituents at the phenyl ring of the bridge. The selected substituents were isopropyl (Catalyst 3), n-hexyl (Cataylst 4), and n-octyl (Catalyst 5), It was found that the longer catalyst not only exhibited a greater activity but also prepared a higher molecular weight copolymer. The catalyst 3 having a bulky isopropyl substituent revealed the lower activity but formed the highest molecular weight polymer comparing with the other alkyl substituted DCGCs. These results were able to be understood on the basis of the electronic and steric characteristics of the bridge. This study confirms that the control of the bridge structure of DCGC may contribute to control the microstructure of polymers.

A Kinetic Study on Aminolysis of 2-Pyridyl X-Substituted Benzoates: Effect of Changing Leaving Group from 4-Nitrophenolate to 2-Pyridinolate on Reactivity and Mechanism

  • Lee, Jong-Pal;Bae, Ae-Ri;Im, Li-Ra;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3588-3592
    • /
    • 2010
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for nucleophilic substitution reactions of 2-pyridyl X-substituted benzoates 8a-e with a series of alicyclic secondary amines in $H_2O$ at $25.0{\pm}0.1^{\circ}C$. The $k_N$ values for the reactions of 8a-e are slightly smaller than the corresponding reactions of 4-nitrophenyl X-substituted benzoates 1a-e (e.g., $kN^{1a-e}/k_N^{8a-e}$ = 1.1 ~ 3.1), although 2-pyridinolate in 8a-e is ca. 4.5 $pK_a$ units more basic than 4-nitrophenolate in 1a-e. The Br$\o$nsted-type plot for the aminolysis of 8c (X = H) is linear with $\beta_{nuc}$ = 0.77 and $R^2$ = 0.991 (Figure 1), which is typical for reactions reported previously to proceed through a stepwise mechanism with breakdown of a zwitterionic tetrahedral intermediate $T^{\pm}$ being the rate-determining step (RDS), e.g., aminolysis of 4-nitrophenyl benzoate 1c. The Hammett plot for the reactions of 8a-e with piperidine consists of two intersecting straight lines (Figure 2), i.e., $\rho$ = 1.71 for substrates possessing an electron-donating group (EDG) while $\rho$ = 0.86 for those bearing an electron-withdrawing group (EWG). Traditionally, such a nonlinear Hammett plot has been interpreted as a change in RDS upon changing substituent X in the benzoyl moiety. However, it has been proposed that the nonlinear Hammett is not due to a change in RDS since the corresponding Yukawa-Tsuno plot exhibits excellent linear correlation with $\rho$ = 0.85 and r = 0.62 ($R^2$ = 0.995, Figure 3). Stabilization of substrates 8a-e in the ground state has been concluded to be responsible for the nonlinear Hammett plot.

Iodine Isotope Exchanges Between o-lodohippuric Acid and Radioiodide (오르토 요오도히퓨린산과 방사성요오드 이온간의 요오드 등위원소 교환반응)

  • Jae-Rok Kim;Ok-Doo Awh;Hyeon-Sook Koo;Kyung-Bae Park
    • Nuclear Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.145-152
    • /
    • 1981
  • Even though a lately reported method of high temperature exchange labelling of o-iodo-hippuric acid (Hippuran) in the absence of oxidizing agent was considered to be an attractive one, the exchange mechanism was somewhat unclear. In this study iodine isotope exchanges between o-iodohippuric acid (OIH) and radioiodide ($^{125}$ $I^{ }$) or between OIH and molecular radioiodine ($^{125}$ $I_2$) were carried out at two different temperatures. Rate constants and activation parameters were measured by applying a radio-paper chromatography technique. Since o-iodobenzoic acid is known as a by-product in the exchange labelling of OIH, data were also obtained for the OIB-iodide systems for comparison. The rate constant was increased in the order of OIB...$^{125}$ $I^{[-10]}$ >OIB...$^{125}$ $I_2$>OIH..$^{125}$ $I^{[-10]}$ >OIH...$^{125}$ $I_2$ and the activation parameters for OIH were generally larger than those for OIB :$\Delta$H$\neq$$_{OIH}$>$\Delta$H$\neq$$_{OIB}$, $\Delta$S$\neq$$_{OIH}$>$\Delta$S$\neq$$_{OIB}$. These results suggest that the mechanism of the high temperature exchange is predominantly nucleophilic even though some electrophilic character can also be involved depending upon reaction conditions. Such a fact may well be caused by a feasible formation of hydrogen bonding type transition state due probably to the ortho substituent effect of-CONHC $H_2$COOH. Thus, the high temperature exchange method is estimated to be quite effective for labelling Hippuran especially at a small research center where reducing agent-free $^{131}$ I is unavailable.ailable..

  • PDF

Chemical Reactions in Surfactant Solution (I). Substituent Effects of 2-Alkylbenzimidazolide ions on Dephosphorylation in CTABr Solutions (계면활성제 용액속에서의 화학반응 (제1보). 미셀용액속에서의 탈인산화 반응에 미치는 2-알킬벤즈이미다졸음이온들의 치환기효과)

  • Young-Seuk Hong;Chan-Sik Park;Jung-Bae Kim
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.522-532
    • /
    • 1985
  • The reactions of p-nitrophenyldiphenylphosphate (p-NPDPP) with anions of benzimidazole (BI) and its 2-alkyl derivatives (R-BI) are strongly catalyzed by the micelles of cetyltrimethyl ammonium bromide (CTABr). On the other hand, the first order rate constants $(k'_{R-BI^-})$ and the second order rate constants $(k_{m(R-BI^-)})$ of the reactions mediated by R-$BI^-$in the micellar pseudophase are much smaller than those mediated by $BI^-$. In order to explain the slower rates of the micellar reactions mediated by R-$BI^-$, we compared the concentration-ratios ([R-$BI^-$]/[$BI^-$]) with the first order rate constant-ratios $(k'_{R-BI^-}/k'_{BI^-})$ and the second order constant-ratios $(k_{m(R-BI^-)}/k_{m(BI^-)})$ for the reactions taking place in the micellar pseudophase. The rate constant-ratios were much smaller than the concentration-ratios. For example in a 5 ${\times}10^{-4}$M butyl-BI solution, the two ratios were 0.089 and 0.430 (for the first order) respectively, and in a $10^{-4}$M butyl-BI solution the former was 0.100 (for the second order). This predicts that the reactivities of R-$BI^-$ in the micellar pseudophase are much smaller than that of $BI^-$. Based on the values of several kinetic parameters measured for dephosphorylation of p-NPDPP mediated by R-$BI^-$, a schemetic model is proposed. Due to the hydrophobicity and the steric effect of the alkyl substituents, these groups would penetrate into the core of the micelle for stabilization by van der Waals interaction with long cetyl groups of CTABr. Consequently, the movements of R-$BI^-$ bound to the micelle should be restricted, leading to decreased collison frequencies between the nucleophiles and p-NPDPP. We refer this as an "anchor effect". This effect became more predominent when a larger alky group in R-BI was employed and when a greater concentration of R-BI was used.

  • PDF

Structure-activity relationships on the selective herbicidal activity between rice plant and barnyard grass by the N-phenyl substituents in 2-(4-(6-chloro-2-benzoxazolyloxy)-phenoxy)-N-phenyl propionamide derivatives (2-(4-(6-chloro-2-benzoxazolyloxy) phenoxy)-N-phenyl propionamide 유도체 중 N-phenyl 치환체들에 의한 벼와 피의 선택적 제초활성에 미치는 구조-활성관계)

  • Sung, Nack-Do;Lee, Sang-Ho;Chang, Hae-Sung;Kim, Dae-Whang;Kim, Jin-Suk
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.3
    • /
    • pp.11-19
    • /
    • 1999
  • A some of synthesized 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenyl propionamide derivativesa substrates were found to selectivity significantly with both rice plant (Oryza sativa L.) and barnyard grass (Echinochloa crus-galli) for those her- bicidal activities with post emergence in up land. The selectivity of substrates against rice plant better than that of Fenoxaprop-ethyl. The structure activity relationship (SAR) n the selectivity of N-phenyl substituents were analyzed by the Free-Wilson and Hansch method. The SAR approach against barnyard grass is shown that the optimal ($({\pi})_{opt.}=1.60$) hydrophobicity and electron donating effects ($0<{\sigma}$ & 0$(ES)_{opt.}=0.87$) so that the herbicidal activity against rice plant can be decreased. The significance of these results on the selectivity between barnyard grass and rice plant is discussed. And it is assumed that the 2-ethoxy-3-methoxy-4-dimethylamino group substituent ($pI_{50}$=6.60, 1g/ha) is selected as the most highest herbicidal activity against barngard grass in green house.

  • PDF