• 제목/요약/키워드: subgrades

검색결과 29건 처리시간 0.03초

WCR을 이용한 노상토 함수량의 측정 및 밀도 영향 평가 (Effect of Density on WCR Measurement of Water Content in Subgrade Soils)

  • 이치헌;박성완;정진훈;권순민
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1199-1204
    • /
    • 2005
  • The purpose of field monitoring system in KHC-Test Road located at Joongbu-Inland Highway, is to provide the performance data for traffic and environmental loadings from pavement surface. Among them, water content reflectometers(WCR) are used to measure the volumetric water content of subgrades soils used in test roads. However, most of the WCRs are not well-calibrated based on the field conditions. In this study, the laboratory based test is performed at various density conditions to evaluate the volumetric water content in subgrade Soils with a WCR. Based on the laboratory testings, the effect of density on WCR measurement are well evaluated for predicting the volumeric water content.of subgrades soils in KHC-Test road.

  • PDF

Water Content Reflectometer로 측정한 현장 노상토의 함수량에 대한 다짐도 영향 평가 (Effect of Density on Water Content Reflectometer Measured Field Water Content in Pavement Subgrades)

  • 박성완;이치헌;황규영
    • 한국도로학회논문집
    • /
    • 제8권3호
    • /
    • pp.115-127
    • /
    • 2006
  • 현재 중부내륙 고속도로 시험도로(test road)에는 환경하중에 대한 도로 포장체의 환경적인 거동 특성을 파악하기 위하여 다져진 노상토에 WCR형태의 함수량계로 측정되는 체적 함수량이 현장 밀도의 영향등으로 부정확하게 예측되는 경향을 나타내고 있다. 따라서 본 연구에서는 흙의 특성과 현장 밀도를 고려하여 현장에 적합한 함수량 보정을 실내 및 현장시험을 각각 실시하고 이를 토대로 보정방정식을 제안하였다. 연구 결과 보정된 함수량은 현장의 측정치에 근접하게 판명되었다. 따라서 WCR을 활용하여 다짐된 노상토 지반의 체적 함수량을 측정시 사용된 흙의 종류 및 다짐조건 등이 고려되어야 한다.

  • PDF

암과 흙 혼합재료로 이루어진 철도노반의 열차 반복하중 작용에 의한 변형특성 (Deformation Characteristics of Crushed Rock-Soil Mixtures of Railway Subgrade under Train Cyclic Loadings)

  • 김대상;박성용;이용일;조국환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.955-963
    • /
    • 2008
  • There are lots of tunnel intervals in the KTX II stage construction line for the linearity of railway line passing mountain region. In order to use the rocks from tunnel excavations, railway subgrades are constructed with crushed rock-soil mixtures. In this study, plain strain test using large scale box was conducted in order to analyze the characteristics of deformation behavior of railway subgrades composed of crushed rock-soil mixtures. The effects of variation of degree of saturation, stress level of applied loadings, and number of loading cycles on the resilient and permanent deformation behavior were analyzed. The results show that degree of saturation have a great effect on the deformation behavior of crushed rock-soil mixtures. The axial strain ranges between $0.1{\sim}0.8%$ with variation of degree of saturation, in assumption that deviatoric stress applied on the subgrade by high-speed train load is 55kPa.

  • PDF

Numerical analysis of geocell reinforced ballast overlying soft clay subgrade

  • Saride, Sireesh;Pradhan, Sailesh;Sitharam, T.G.;Puppala, Anand J.
    • Geomechanics and Engineering
    • /
    • 제5권3호
    • /
    • pp.263-281
    • /
    • 2013
  • Geotextiles and geogrids have been in use for several decades in variety of geo-structure applications including foundation of embankments, retaining walls, pavements. Geocells is one such variant in geosynthetic reinforcement of recent years, which provides a three dimensional confinement to the infill material. Although extensive research has been carried on geocell reinforced sand, clay and layered soil subgrades, limited research has been reported on the aggregates/ballast reinforced with geocells. This paper presents the behavior of a railway sleeper subjected to monotonic loading on geocell reinforced aggregates, of size ranging from 20 to 75 mm, overlying soft clay subgrades. Series of tests were conducted in a steel test tank of dimensions $700mm{\times}300mm{\times}700mm$. In addition to the laboratory model tests, numerical simulations were performed using a finite difference code to predict the behavior of geocell reinforced ballast. The results from numerical simulations were compared with the experimental data. The numerical and experimental results manifested the importance that the geocell reinforcement has a significant effect on the ballast behaviour. The results depicted that the stiffness of underlying soft clay subgrade has a significant influence on the behavior of the geocell-aggregate composite material in redistributing the loading system.

수치해석을 통한 콘크리트궤도 하부 강화노반의 적정성 검토 (Appropriateness Evaluation of Reinforced Subgrade beneath Concrete Track through Numerical Analysis)

  • 이수형
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.680-685
    • /
    • 2005
  • An active application of concrete track is being expected for the future constructions of Korean railroad. For the successful concrete track construction in earthwork areas, proper reinforced subgrades, which effectively distribute train loads to subground, should be installed. In this paper, behaviors of concrete track on the reinforced subgrade with the standard stiffness and depth were investigated through numerical analyses. The appropriateness of the reinforced subgade was evaluated by analyzing the distributions of the settlements and vertical stress beneath the concrete slab.

  • PDF

Full-scale investigations into installation damage of nonwoven geotextiles

  • Sardehaei, Ehsan Amjadi;Mehrjardi, Gholamhosein Tavakoli;Dawson, Andrew
    • Geomechanics and Engineering
    • /
    • 제17권1호
    • /
    • pp.81-95
    • /
    • 2019
  • Due to the importance of soil reinforcement using geotextiles in geotechnical engineering, study and investigation into long-term performance, design life and survivability of geotextiles, especially due to installation damage are necessary and will affect their economy. During installation, spreading and compaction of backfill materials, geotextiles may encounter severe stresses which can be higher than they will experience in-service. This paper aims to investigate the installation damage of geotextiles, in order to obtain a good approach to the estimation of the material's strength reduction factor. A series of full-scale tests were conducted to simulate the installation process. The study includes four deliberately poorly-graded backfill materials, two kinds of subgrades with different CBR values, three nonwoven needle-punched geotextiles of classes 1, 2 and 3 (according to AASHTO M288-08) and two different relative densities for the backfill materials. Also, to determine how well or how poorly the geotextiles tolerated the imposed construction stresses, grab tensile tests and visual inspections were carried out on geotextile specimens (before and after installation). Visual inspections of the geotextiles revealed sedimentation of fine-grained particles in all specimens and local stretching of geotextiles by larger soil particles which exerted some damage. A regression model is proposed to reliably predict the installation damage reduction factor. The results, obtained by grab tensile tests and via the proposed models, indicated that the strength reduction factor due to installation damage was reduced as the median grain size and relative density of the backfill decreases, stress transferred to the geotextiles' level decreases and as the as-received grab tensile strength of geotextile and the subgrades' CBR value increase.

점성토의 회복탄성계수 추정을 위한 경험식 (Empirical Correlation for the Estimation of Resilient Modulus of Cohesive Soils)

  • 이우진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.259-264
    • /
    • 1994
  • The 1986 AASHTO Guide for the Design of Pavement Structures introduced the resilient modulus as a definitive material property to characterize roadbed soil. Although the incorporation of resilient modulus represents a significant acvance in pavement design practice, the test procedure for resilient modulus is complicated and time-consuming. Therefore, it is necessary to develop data base of resilient modulus for the soils frequently encountered; and to develop the reliable correlations between resilient properties and parameters from simple routine tests, In this study, resilient modulus tests were performed on five cohesive soils sampled from in-service subgrades. The stress at 1 percent axial strain in unconfined compression test(su1.0%) was found as a good indicator of the resilient modulus, and unique relationship between Mg and Su1.0% was obtained. A simple chart to estimate the resilient modulus at different levels of confining stress and deviator stress was also developed.

  • PDF

시멘트 콘크리트 포장체 줄눈부의 거동해석 (Analysis of Joint Behavior in Cement Concrete Pavements)

  • 변근주;이상민;임갑주;한봉완
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.1-6
    • /
    • 1990
  • Joints are provided in cement concrete pavements to control transverse and longitudinal cracking that occur due to restrained deformations caused by moisture and temperature variations in the slab. But the construction of joints reduces the load-carrying capacity of the pavement at the joints, and pavements have beem deteriorated by cracks at the slab edges along the joints due to traffic loads. Therefore, it is important to analyze the behavior of joints accurately in the design of cement concrete pavements. In this study, the mechanical behavior of cement concrete pavement slabs is analyzed by the plate-finite element model, and Winkler foundation model is adopted to analyze the subgrades. The load transfer mechanism of joints are composed of dowel action, aggregate interlocking, and tied-key action, and the analytical program is developed using these joint models.

  • PDF