• Title/Summary/Keyword: subcritical fluid

Search Result 20, Processing Time 0.028 seconds

Stability Analysis of an Accelerator-Driven Fluid-Fueled Subcritical Reactor System

  • Kim, Do-Sam;Cho, Nam-Zin
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.90-95
    • /
    • 1997
  • In this work, linear dynamics of a circulating fluid-fueled subcritical reactor system with temperature feedback and external neutron source was modeled and examined. In a circulating fluid-fuel system, the stable region is slightly moved by a circulation fluid effect. The effects of subcriticality and temperature feedback coefficient on the reactor stability were tested by calculating frequency response of neutron density originated from reactivity perturbation or external source oscillation of system. The amplitude transfer function has a different shape near subcritical region due to the exponential term in the transfer function. The results of the study show that at a slightly subcritical region, low frequency oscillation in accelerator current or reactivity can be amplified depending on the temperature feedback. However, as the subcriticality increases, the oscillation becomes negligible regardless of the magnitude of the temperature feedback coefficient.

  • PDF

Effect of Solvents as Subcritical and Supercritical Fluid on Decomposition and Extraction of Used Automotive Tire (아임계와 초임계유체로써 폐타이어 분해와 추출에 미치는 용매의 영향)

  • Kang, W.S.;Na, D.Y.;Kim, I.S.;Han, S.B.;Park, P.W.
    • Elastomers and Composites
    • /
    • v.34 no.3
    • /
    • pp.239-246
    • /
    • 1999
  • Side wall samples from a used automotive tire were subjected to subcritical and supercritical decomposition and extraction with three solvents, water, 28% ammonia solution and ammonia. For 6mm cube samples the rate of supercritical extraction with water followed a first-order kinetics with an activation energy of 140 kJ/mol. Solvent power of 28% ammonia so lotion at supercritical condition was found to be higher than supercritical water at initial extraction as pressure decreased. These phenomena were considered to be an effect of ammonia involved in water.

  • PDF

Experimental Studies on the Performance of a Transcritical Cycle for Hot Water Heating Using Carbon Dioxide (이산화탄소를 이용한 온수급탕용 초월임계사이클의 성능에 대한 실험적 연구)

  • 김성구;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.461-470
    • /
    • 2003
  • The purpose of this study is to investigate the performance of a transcritical cycle for hot water heating using $CO_2$ as a working fluid. Some of the main parameters that affect the practical performance of the $CO_2$ system are discussed; the performance on the variation of refrigerant charge, changes in flow conditions of secondary fluids, and that with or without internal heat exchanger, The experimental results show that the optimum charge is approximately the same for various mass flow rates of the secondary fluid at gas cooler. The experimental results on the effect of secondary fluids are in general agreement with the experimental results of transcritical cycle in the open literature and show similar trend for conventional subcritical vapor compression cycles. The heat exchanger effectiveness increases with an increase of the heat exchange area of the internal heat exchanger regardless of the mass flow rate at the gas cooler.

Thermodynamic Performance Characteristics of Transcritical Organic Rankine Cycle Depending on Source Temperature and Working Fluid (열원온도와 작동유체에 따른 초월임계 유기랭킨사이클의 열역학적 성능 특성)

  • Kim, Kyoung Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.699-707
    • /
    • 2017
  • This study presents a comparative thermodynamic analysis of subcritical and transcritical organic Rankine cycles for the recovery of low-temperature heat sources considering nine substances as the working fluids. The effects of the turbine inlet pressure, source temperature, and working fluid on system performance were all investigated with respect to metrics such as the temperature distribution of the fluids and pinch point in the heat exchanger, mass flow rate, and net power production, as well as the thermal efficiency. Results show that as the turbine inlet pressure increases from the subcritical to the supercritical range, the mismatch between hot and cold streams in the heat exchanger decreases, and the net power production and thermal efficiency increase; however, the turbine size per unit power production decreases.

Design and Optimization for the Windowless Target of the China Nuclear Waste Transmutation Reactor

  • Cheng, Desheng;Wang, Weihua;Yang, Shijun;Deng, Haifei;Wang, Rongfei;Wang, Binjun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.360-367
    • /
    • 2016
  • A windowless spallation target can provide a neutron source and maintain neutron chain reaction for a subcritical reactor, and is a key component of China's nuclear waste transmutation of coupling accelerator and subcritical reactor. The main issue of the windowless target design is to form a stable and controllable free surface that can ensure that energy spectrum distribution is acquired for the neutron physical design when the high energy proton beam beats the lead-bismuth eutectic in the spallation target area. In this study, morphology and flow characteristics of the free surface of the windowless target were analyzed through the volume of fluid model using computational fluid dynamics simulation, and the results show that the outlet cross section size of the target is the key to form a stable and controllable free surface, as well as the outlet with an arc transition. The optimization parameter of the target design, in which the radius of outlet cross section is $60{\pm}1mm$, is verified to form a stable and controllable free surface and to reduce the formation of air bubbles. This work can function as a reference for carrying out engineering design of windowless target and for verification experiments.

Three-dimensional dynamics of vortex-induced vibration of a pipe with internal flow in the subcritical and supercritical regimes

  • Duan, Jinlong;Chen, Ke;You, Yunxiang;Wang, Renfeng;Li, Jinlong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.692-710
    • /
    • 2018
  • The Three-dimensional (3-D) dynamical behaviors of a fluid-conveying pipe subjected to vortex-induced vibration are investigated with different internal flow velocity ${\nu}$. The values of the internal flow velocity are considered in both subcritical and supercritical regimes. During the study, the 3-D nonlinear equations are discretized by the Galerkin method and solved by a fourth-order Runge-Kutta method. The results indicate that for a constant internal flow velocity ${\nu}$ in the subcritical regime, the peak Cross-flow (CF) amplitude increases firstly and then decrease accompanied by amplitude jumps with the increase of the external reduced velocity. While two response bands are observed in the In-line (IL) direction. For the dynamics in the lock-in condition, 3-D periodic, quasi-periodic and chaotic vibrations are observed. A variety of CF and IL responses can be detected for different modes with the increase of ${\nu}$. For the cases studied in the supercritical regime, the dynamics shows a great diversity with that in the subcritical regime. Various dynamical responses, which include 3-D periodic, quasi-periodic as well as chaotic motions, are found while both CF and IL responses are coupled while ${\nu}$ is beyond the critical value. Besides, the responses corresponding to different couples of ${\mu}_1$ and ${\mu}_2$ are obviously distinct from each other.

Effects of Internal Heat Exchanger on Performance of Organic Rankine Cycles (유기랭킨사이클의 성능에 미치는 내부열교환기의 영향)

  • Kim, Kyoung-Hoon;Jung, Yoong-Guan
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.402-408
    • /
    • 2011
  • Organic Rankine cycles (ORC) can be used to produce power from heat at different temperature levels available as geothermal heat, as biogenic heat from biomass, as solar or as waste heat. In ORC working fluids with relatively low critical temperatures and pressures can be compressed directly to their supercritical pressures and heated before expansion so as to obtain a better thermal match with their heat sources. In this work thermal performance of ORC with and without an internal heat exchanger is comparatively investigated in the range of subcritical and transcritical cycles. R134a is considered as working fluid and special attention is paid to the effect of turbine inlet pressure on the characteristics of the system. Results show that operation with supercritical cycles can provide better performance than subcritical cycles and the internal heat exchanger can improve the thermal efficiency when the temperature of heat source becomes higher.

Visualization of Doublet Impinging Jet Spray in Supercritical Mixed Hydrocarbon Fluid (초임계 탄화수소계열 혼합유체의 이중 충돌 제트 분무 가시화)

  • Song, Juyeon;Choi, Myeung Hwan;An, Jeongwoo;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.53-58
    • /
    • 2021
  • Based on surrogate model, a hydrocarbon mixture was analyzed by visualizing the impinging break up mechanism in subcritical and supercritical conditions. Decane and methylcyclohexane with different critical pressures and temperatures were selected as experimental fluids. The impinging injector was installed inside the chamber, and the spray was visualized through a speed camera in subcritical and supercritical conditions. The injection condition of the mixture and chamber was kept constant at Pr(P/Pc) = 1, and Tr(T/Tc) was increased from 0.48 to 1.02. As Tr increased, the spray angle increased, and the sheet length decreased as the properties of the mixture reached each critical point. In addition, when the mixture approached the near critical point, it was shown that the change in density gradient was largely observed out of the impinging break up mechanism.

Influence of Critical Point of Hydrocarbon Jet Injected into Near-Critical Environment on Injection Behavior (근임계 환경으로 분사되는 탄화수소 제트의 임계점이 분사거동에 미치는 영향)

  • Yoon, Taekyung;Shin, Dongsoo;Lee, Keonwoong;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.32-39
    • /
    • 2018
  • Supercritical injection behavior of liquid hydrocarbon compounds, which are used as main components of propellant fuel, was analyzed. Decane and Methylcyclohexane (MCH) with different critical points were selected as experimental fluid and Shadowgraphy technique was used. Decane and MCH behave differently in the initial state under the subcritical condition. However, near the critical point, the enthalpy of evaporation became close to 0, so that phase change into supercritical fluid occurred, not vaporization process, and no breakup of both fluids occurred.

Power Enhancement Potential of a Low-Temperature Heat-Source-Driven Rankine Power Cycle by Transcritical Operation (초월임계 운전에 의한 저온 열원 랭킨 동력 사이클의 출력 향상 가능성)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Ra, Ho-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1343-1349
    • /
    • 2011
  • In this study, the power enhancement potential of a Rankine power cycle by transcritical operation was investigated by comparing the power of an HFC-134a subcritical cycle with that of an HFC-125 transcritical cycle, for a low-grade heat source with a temperature of about $100^{\circ}C$. For a fair comparison using different working fluids, each cycle was optimized by three design parameters from the viewpoint of power. In contrast to conventional approaches, the working fluid's heat transfer and pressure drop characteristics were considered in the present approach, with the aim of ensuring a more realistic comparison. The results showed that the HFC-125 transcritical cycle yields 9.4% more power than does the HFC-134a subcritical cycle under the simulation conditions considered in the present study.