• Title/Summary/Keyword: sub-compounds

Search Result 1,003, Processing Time 0.034 seconds

Biological Activity of Chemical Constituents Isolated from Strain Chlamydomonassp. KSF108 (Chlamydomonadaceae)

  • Tran, Huynh Nguyen Khanh;Youn, Ui Joung;Kim, Minji;Cao, Thao Quyen;Kim, Jeong Ah;Woo, Mi Hee;Kim, Sanghee;Min, Byung Sun
    • Natural Product Sciences
    • /
    • v.26 no.1
    • /
    • pp.59-63
    • /
    • 2020
  • This study focused on investigation of the immunosuppressive inhibitory effect through determination of IL-2 production of nine compounds (1 - 9) isolated from Chlamydomonas sp. KSF108. Among them, compounds 1, 5, and 6 displayed moderately inhibitory effects on IL-2 production at a concentration of 100 µM. In addition, the related ones including cytotoxic, anti-inflammatory, and anti-oxidant activities were also elucidated. 6 further displayed cytotoxic activity against the MCF-7 cell line, with an IC50 value of 17.2 µM and 4, 6 - 7, and 9 possessed significant DPPH radical scavenging activity, with IC50 values ranging from 3.1 to 4.4 µM. To the best of our knowledge, this is the first report on the bioactivity of isolated chemical constituents from the genus Chlamydomonas. Compounds 1 and 5 investigated for the first time in the activity of immunosuppressivity and 6 may come to serve as the most important marker in broad-spectrum activities of the secondary metabolites identified from C. sp. KSF108.

Syntheses and Thermal Behaviors of Rb(FOX-7)·H2O and Cs(FOX-7)·H2O

  • Luo, Jinan;Xu, Kangzhen;Wang, Min;Song, Jirong;Ren, Xiaolei;Chen, Yongshun;Zhao, Fengqi
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2867-2872
    • /
    • 2010
  • Two new energetic organic alkali metal salts, 1,1-diamino-2,2-dinitroethylene rubidium salt [Rb(FOX-7)${\cdot}H_2O$] and 1,1-diamino-2,2-dinitroethylene cesium salt [Cs(FOX-7)${\cdot}H_2O$], were synthesized by reacting of 1,1-diamino-2,2-dinitroethylene (FOX-7) and rubidium chloride or cesium chloride in alkali methanol aqueous solution, respectively. The thermal behaviors of Rb(FOX-7)${\cdot}H_2O$ and Cs(FOX-7)${\cdot}H_2O$ were studied with DSC and TG methods. The critical temperatures of thermal explosion of the two compounds are 216.22 and $223.73^{\circ}C$, respectively. Specific heat capacities of the two compounds were determined with a micro-DSC method, and the molar heat capacities are 217.46 and $199.47\;J\;mol^{-1}\;K^{-1}$ at 298.15 K, respectively. The adiabatic times-to-explosion were also calculated to be a certain value of 5.81 - 6.36 s for Rb(FOX-7)${\cdot}H_2O$, and 9.92 - 10.54 s for Cs(FOX-7)${\cdot}H_2O$. After FOX-7 becoming alkali metal salts, thermal decomposition temperatures of the compounds heighten with the rise of element period, but thermal decomposition processes become intense.

Investigation on the Origin of Band Gap in Heusler Alloy Co2MnSi through First-principles Electronic Structure Calculation (호이슬러 화합물 Co2MnSi에서 전자구조계산을 통한 에너지 간격의 원인에 대한 고찰)

  • Kim, Dong-Chul;Lee, Jae-Il
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.201-205
    • /
    • 2008
  • In order to investigate the origin of the band gap in the half-metallic Heusler alloy, $Co_2MnSi$, through the electronic structure calculation, we have calculated the electronic structures for the compounds consisted of parts of Heusler structures, i.e. zinc-blende CoMn, half-Heusler CoMnSi, and artificial $Co_2Mn$, using the full-potential first-principles band calculation method. By investigating the band hybridization and energy gap for the calculated density of states for these compounds, we found that the the origin of the band gap is not consistent with the explanation discussed by Galanakis et al. We have also discussed the magnetism for these compounds by the calculated number of majority- and minority-spin electrons.

Double magnetic entropy change peaks and high refrigerant capacity in Gd1-xHoxNi compounds in the melt-spun form

  • Jiang, Jun-fan;Ying, Hao;Feng, Tang-fu;Sun, Ren-bing;Li, Xie;Wang, Fang
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1605-1608
    • /
    • 2018
  • $Gd_{1-x}Ho_xNi$ melt-spun ribbons were fabricated by a single-roller melt spinning method. All the compounds crystallize in an orthorhombic CrB-type structure. The Curie temperature ($T_C$) was tuned between 46 and 99 K by varying the concentration of Gd and Ho. A spin reorientation (SRO) transition is observed around 13 K. Different from $T_C$, the SRO transition temperature is almost invariable for all compounds. Two peaks of magnetic entropy change (${\Delta}S_M$) were found. One at the higher temperature range was originated from the paramagnet-ferromagnet phase transition and the other at the lower temperature range was caused by the SRO transition. The maximum of ${\Delta}S_M$ around $T_C$ is almost same. The other maximum of ${\Delta}S_M$ around SRO transition, however, had significantly positive relationship with x. It reached a maximum about $8.2J\;kg^{-1}\;K^{-1}$ for x = 0.8. Thus double large ${\Delta}S_M$ peaks were obtained in $Gd_{1-x}Ho_xNi$ melt-spun ribbons with the high Ho concentration. And the refrigerant capacity power reached a maximum of $622J\;kg^{-1}$ for x = 0.6. $Gd_{1-x}Ho_xNi$ ribbons could be good candidate for magnetic refrigerant working in the low temperature especially near the liquid nitrogen temperature range.

Tryptophan-derived Alkaloids from Hedera rhombea Fruits and Their Butyrylcholinesterase Inhibitory Activity

  • Ha, Manh Tuan;Park, Se Eun;Kim, Jeong Ah;Woo, Mi Hee;Choi, Jae Sue;Min, Byung Sun
    • Natural Product Sciences
    • /
    • v.28 no.3
    • /
    • pp.138-142
    • /
    • 2022
  • Alzheimer's disease (AD) is the most common age-related neurodegenerative disease in industrialized countries. It is estimated that about 47 million people living with dementia and the number of cases will be tripled by 2050. However, the exact mechanism of AD is not known, and full therapy has still not been found. Various tryptophan-derived alkaloids have been reported as promising agents for the treatment of AD. In the present study, a series of tryptophan-derived alkaloids were isolated and characterized from the methanol extract of Hedera rhombea fruit. Based on the analysis of their observed and reported spectroscopic data, their structures were identified as N-[4'-hydroxy-(E)-cinnamoyl]-L-tryptophan (1), N-[3',4'-dihydroxy-(E)-cinnamoyl]-L-tryptophan (2), N-[4'-hydroxy-(E)-cinnamoyl]-L-tryptophan methyl ester (3), and N-[3',4'-dihydroxy-(E)-cinnamoyl]-L-tryptophan methyl ester (4). These compounds were screened for anti-Alzheimer activity via their inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes in vitro. As a result, compounds 3 and 4 showed moderate BChE inhibition with IC50 values of 86.9 and 78.4 μM, respectively, compared to those of the positive control [berberine (IC50 = 11.5 μM)]. However, all four compounds did not show significant inhibition of the AChE enzyme. This is the first time, the AChE and BChE inhibitory activities of these tryptophan-derived alkaloids were investigated and reported.

Effect of Functionalized BR Content on the Wear Particulate Matters and Physical Properties in TBR Tire Tread Compounds

  • Junhwan Jeong;Sanghoon Song;Jin Uk Ha;Daedong Park;Jaeyun Kim;Yeongmin Jung;Donghyuk Kim;Kiwon Hwang;Sungwook Chung;Wonho Kim
    • Elastomers and Composites
    • /
    • v.59 no.2
    • /
    • pp.64-72
    • /
    • 2024
  • As air pollution continues to increase owing to increasing traffic centered in urban areas, the tire industry is researching methods to reduce particulate matter. In this study, functionalized lithium butadiene rubber (F-LiBR) was applied to a natural rubber (NR)/butadiene rubber (BR) blend compound often used in truck bus radial (TBR) tire treads. The effect of the functional group that can react with carbon black (CB) in BR was investigated in terms of the dispersion of CB and the compound performance, including the generation of particulate matter. Compounds that were substituted with F-LiBR exhibited enhanced interaction with CB, resulting in excellent filler dispersion. Although F-LiBR exhibited lower crosslinking density and inferior abrasion resistance due to its high vinyl content, the compound with 30 phr of F-LiBR was advantageous in terms of its rolling resistance due to the excellent filler dispersion, which was also effective in reducing the amount of generated particulate matter (up to 56% reduction for PM2.5, and 67% reduction for PM10). The results confirmed the benefits of the introduction of functional groups into TBR tire tread compounds, which can aid in improving the fuel efficiency and reducing particulate matter generation.

Evaluation of Insulation Deterioration for the Development of SVM Algorithm to Diagnose OF Cable (OF 케이블 진단용 SVM 알고리즘 개발을 위한 절연열화 평가)

  • Kwak, Byeong Sub;Jun, Tae-Hyun;Kim, Ah-Reum;Park, Hyun-joo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.263-273
    • /
    • 2019
  • South Korea's OF cable is reaching its expected design life of 30 years, and as a result, the risk of failure is increasing. Therefore, it is necessary to diagnose the long-term operating OF cables through accurate diagnosis at the right time to prevent the failure. Currently, the KEPCO periodically conducts DGA. However, the gas found in DGA is caused by oil deterioration as well as insulation paper. Therefore, the analysis of the degree of polymerization and furan compounds which is an evaluation of insulation paper considered to be the life of OF cables is required. In addition, the results of the evaluation of deterioration of insulation paper need to be checked for correlation with the results of DGA. In this study, DGA carried out through GC, the degree of polymerization was analyzed using an automatic viscometer, and HPLC was used to detect the furan compounds. In addition, the obtained results were applied to the SVM technique, which was recently introduced to determine abnormalities in OF cable. And the results which were accurate and reliable were obtained.

Effects of Silane Structure on Composite Interaction Parameter (αC)) of Silica Filled Rubber Compounds (실란 구조가 실리카 복합소재 내 구조발달 상호계수(αC)에 미치는 영향)

  • Kim, Sung Min;Kim, Kwang Jea
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.411-416
    • /
    • 2014
  • Due to the polar characteristics of silica compared to carbon black, the degree of silica dispersion, which affects the mechanical properties of rubber compounds, is an important issue. Wolff first introduced the in-rubber structure of particles (${\alpha}_F$) to express the structure development in the compounds; however, with the introduction of bifunctional silanes, his theory could not explain the 3-dimensional network structure of the compounds. Later his theory was expanded to express the composite interaction parameter (in-rubber structure of the compound) (${\alpha}_C$), which included Wolff's filler-filler interaction parameter (${\alpha}_F$), however, there was no reported experimental result proving the theory. This research first experimentally expressed the in-rubber structure of the compound ${\alpha}_C$ (= ${\alpha}_F+{\alpha}_{FP}$(filler-silane-rubber interaction parameter) + ${\alpha}_P$ (rubber-rubber interaction parameter)) upon mono- and bifunctional silane treated silica filled natural rubber (NR) compounds. Using different structure silanes, i.e. PTES, OTES, TESPD, and TESPT, the ${\alpha}_C$ value of each compound was measured and calculated. The ${\alpha}_C$ value of TESPT treated silica filled compound was 1.64, which composed of ${\alpha}_F$ (0.99), ${\alpha}_{FP}$ (0.31), and ${\alpha}_P$ (0.34).

Comparison of characteristic aroma compounds in Korean wild chive (Allium monanthum Maxim.) cultivated in open-fields or greenhouses (노지와 시설 재배 달래의 특징적인 향기 성분 비교)

  • Jang, Boa;Baek, Hyung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.2
    • /
    • pp.126-133
    • /
    • 2022
  • The objective of this study was to analyze volatile and aroma-active compounds in Korean wild chive (Allium monanthum Maxim.) cultivated in open-fields or greenhouse systems using solvent-assisted flavor evaporation-gas chromatography (GC)-mass spectrometry and GC-olfactometry. Aroma-active compounds were evaluated using aroma extract dilution analysis (AEDA). Twenty-two aroma-active compounds with log2 flavor dilutions (FD) of 1-10 were detected in Korean wild chive, which was cultivated in an open-field or a greenhouse. 2-Isopropyl-3-methoxypyrazine ("earthy"), 2-sec-butyl-3-methoxypyrazine ("earthy", "musty"), and dipropyl disulfide ("sulfurous") were the most predominant aroma-active compounds with log2FD of 9-10; this was followed by dimethyl trisulfide ("onion-like") and (E)-1-propenyl propyl disulfide ("fresh onion-like"). The "sulfurous", "earthy", "pungent", and "cabbage-like" aroma notes were strong in Korean wild chive. More intense "pungent" odors were detected in Korean wild chive cultivated in an open-field, whereas more intense "cabbage-like" odors were detected in Korean wild chive cultivated in a greenhouse.

Neuroprotective effects of antioxidant constituents isolated from Opuntia ficus-indica var. saboten Makino

  • K.J. Jung;Lee, E.H.;Kim, H.J.;Lee, J.Y.;Y.S. Song;Lee, Y.H.;J. Cho;Park, M.;Park, H.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.63-63
    • /
    • 2003
  • Opuntia ficus-indicavar. saboten Makino (Cactaceae) is a tropical or subtropical plant that has been widely used as folk medicine for the treatment of diabetes, asthma, burn, edema and gastritis. The purposes of the present study were to identify antioxidant constituents from fruits and stems of the plant cultivated in Cheju island, Korea, and examine their in vitro neuroprotective activities. Using a chromatographic fractionation method, ten chemical constituents were isolated from ethyl acetate extracts. By means of chemical and spectroscopic methods, those were identified as eight flavonoids such as kaempherol (a), quercetin (b), kaempferol 3-methyl ether (c), quercetin 3-methyl ether (d), narcissin (e), dihydrokaernpferol (f), dihydroquercetin (g) and erioclictyol (h), and two terpenoids such as 3-oxo-${\alpha}$-ionol-${\beta}$-d-glucopyranoside (i) and roseoside (j). Among the isolated compounds, comrounds c~e and h~j were those reported for the first titre from the plant. Compounds b, d and g showed DPPH free radical scavenging activities with IC$\sub$50/ values of 28, 19 and 31, ${\mu}$M respectively. Compounds d and g also inhibited iron-dependent lipid peroxidation with IC$\sub$50/ values of 2.4 and 3.5 ${\mu}$M. In a primary rat cortical neuronal cell culture system, compounds b, d and g inhibited xanthine/xanthine oxidase-induced (IC$\sub$50/ values of 18.2, 2.1 and 54.6 ${\mu}$M) and H$_2$O$_2$-induced (IC$\sub$50/ values of 13.6, 1.9 and 25.7 ${\mu}$M) cytotoxicities. In addition, compounds d and g inhibited NMDA-induced excitotoxicity by 21 and 33%, and only compound d inhibited growth factor withdrawal-induced apoptosis by 31% at a tested concentration of 3 ${\mu}$M. The results suggest that the antioxidant constituents with in vitroneuroprotective activities may serve as lead chemicals for the development of neuroprotective agent.

  • PDF