• Title/Summary/Keyword: sub-bituminous

Search Result 73, Processing Time 0.024 seconds

Economic Evaluation of Coals Imported in Last 3 Years for Power Plant Based on Thermal Performance Analysis (최근 3년간 수입 유연탄 분석 및 연소열성능 해석을 활용한 석탄화력 발전소 탄종 경제성 평가 연구)

  • Baek, Sehyun;Park, Hoyoung;Ko, Sung Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.3
    • /
    • pp.44-53
    • /
    • 2013
  • In this study, the economic evaluation for imported coals was conducted for power plant based on thermo-dynamical performance analysis. The number of coal types considered was 1,755 imported by five power generation companies in Korea during the 2010-2012. The higher heating value (HHV) of the coals ranged 4,000-6,500 kcal/kg, mostly sub-bituminous. The 1D thermo-dynamical performance modeling was performed for a 500 MWe standard power plant using PROATES code. It was founded that the low rank coals had negative effects on the plant efficiency mainly due to the increased heat loss by moisture, hydrogen and flue gas. Based on the performance analysis, the economic performance of the coals was evaluated. The apparent price of low-rank coals tended to be significantly lower than design coal; for example, the unit price of coal with a HHV of 4,000 kcal/kg was 57% of the reference coal having 6,080 kcal/kg. Considering the negative effects leading to a decrease in the thermal performance, heating value compensation, and increased parasite load, the corrected unit cost for the coal with 4,000 kcal/kg was 90.7% of the reference coal. Overall, the cost saving by imported coals was not high as expected.

Characteristics of Spontaneous Combustion of Various Fuels for Coal-Fired Power Plant by Carbonization Rank

  • Kim, Jae-kwan;Park, Seok-un;Shin, Dong-ik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.83-92
    • /
    • 2019
  • Spontaneous combustion propensity of various coals of carbonization grade as a pulverized fuel of coal-fired power plant has been tested from an initial temperature of $25^{\circ}C$ to $600^{\circ}C$ by heating in an oven with air to analyze the self-oxidation starting temperature. These tests produce CPT (Cross Point Temperature), IT (Ignition temperature), and CPS (Cross Point Slope) calculated as the slope of time taken for a rapid exothermic oxidation reaction at CPT base. CPS shows a carbonization rank dependence whereby wood pellet has the highest propensity to spontaneous combustion of $20.995^{\circ}C/min$. A sub-bituminous KIDECO coal shows a CPS value of $15.370^{\circ}C/min$, whereas pet coke has the highest carbonization rank at $2.950^{\circ}C/min$. The nature of this trend is most likely attributable to a concentration of volatile matter and oxygen functional groups of coal surface that governs the available component for oxidation, as well as surface area of fuel char, and constant pressure molar heat.

Development of Emission Factors for Greenhouse Gas CO2) from Anthracite Fired Power Plants in Korea (무연탄 화력발전소의 이산화탄소 배출계수 개발)

  • Jeon, Eui-Chan;Myeong, Soo-Jeong;Jeong, Jae-Hak;Lee, Sung-Ho;Sa, Jae-Whan;Roh, Gi-Hwan;Kim, Ki-Hyun;Bae, Wi-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.440-448
    • /
    • 2007
  • Although the anthracite power plant is an important source of greenhouse gas, research on this type of power plant has not been conducted much. The present study investigated the entire anthracite power plants in Korea and analyzed the emitted gas in connection with GC/FD and a methanizer in order to develop $CO_2$ emission factors. The study also sampled the anthracite to analyze the amount of carbon and hydrogen using an element analyzer, and to measure the calorie using an automatic calorie analyzer. The emission factors computed through the fuel analysis was 30.45 kg/GJ and that computed through the $CO_2$ gas analysis was 26.48 kg/GJ. The former is approximately about 15% higher than the latter. When compared the carbon content factors of anthracite with that of bituminous coal, the value of anthracite was 24% higher Compared with IPCC values, the emission factors by the fuel was 14% higher, and that by the emitted $CO_2$ gas was about 1.2% lower. More research is needed on our own emission factors of various energy-consuming facilities in order to stand on a higher position in international negotiations regarding the treaties on climate changes.

Thermal Behavior and Kinetics of Coal Blends during Devolatilization (탈휘발화 과정에서 혼탄의 반응률과 열적 거동에 관한 연구)

  • Ryu, Kwang-Il;Kim, Ryang-Gyoon;Li, Dong-Fang;Wu, Ze-Lin;Jeon, Chung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.121-126
    • /
    • 2013
  • The objective of this research is to predict the TG curve of blends of bituminous coal and sub-bituminous coal during devolatilization. TSL (Thermal Shock Large) TGA was used for Experiments, and Coats-redfern method was used for reaction order calculation. Based on reaction order, sum method was verified to be suitable for a single coal, then, prediction and comparison of TG curve of coal blends was conducted using both of WSM (Weight Sum Method) and MWSM (Modified Weight Sum Method), where the latter was developed in this research. The presented experiment results and WSM & MWSM were showed to be reasonable using linear least square method. MWSM performed more accurately than WSM for the case that TG curve had different slopes and the case that sharp weight loss happened due to release of volatile matter. The results showed that it's possible to predict the thermal behavior of coal blends during devolatilization based on the thermal behavior of single coals.

An Experimental Study on the Devolatilization Kinetics of Ashless coal in Fixed and Entrained Conditions (초청정 석탄의 탈휘발 반응률에 관한 실험적 연구)

  • Yu, Da-Yeon;Lee, Byoung-Hwa;Song, Ju-Hun;Lee, Si-Hyun;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.997-1003
    • /
    • 2011
  • In order to investigate devolatilization characteristics for ashless coal with relatively low ash content and high heating value, an experiment was performed in different bed configurations of TGA and DTF(Drop Tube Furnace) at atmospheric pressure condition. The heating rate was $10^{\circ}C$/min up to $950^{\circ}C$ in TGA, while the temperatures of DTF varied from 500 to $1300^{\circ}C$ in step of $200^{\circ}C$. A weight loss and particle temperature were obtained to determine devolatilization kinetics. The kinetic parameters including an activation energy and pre-exponential factor for ashless coal were obtained using Coats-Redfern method in TGA and single step method in DTF. Furthermore, the devolatilization kinetics of the ashless coal were compared with the results of different kinds of conventional coal such as sub-bituminous and bituminous. The results show that the activation energy of devolatilazation for ashless coal is lower than those of others in fixed and entrained conditions.

Reaction Rate Analysis of CO2 Gasification for Indonesian Coal Char at High Temperature and Elevated Pressure (고온, 고압조건에서의 인도네시아 석탄촤의 CO2 가스화 반응)

  • Lisandy, Kevin Yohanes;Kim, Ryang-Gyoon;Hwang, Chan-Won;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.781-787
    • /
    • 2014
  • A pressurized wire mesh heating reactor (PWMR) can provide high pressure and temperature experimental conditions up to 50 atm and 1750 K, respectively. This equipment was developed to evaluate the intrinsic reaction kinetics of $CO_2$ gasification. A PWMR utilizes a platinum (Pt) wire mesh resistance to generate heat with a direct current (DC) electricity supply. This DC power supply can then be controlled by computer software to reach the exact expected terminal temperature and heating period. In this study, BERAU (sub-bituminous Indonesian coal) was pulverized then converted into char with a particle size of $90-150{\mu}m$. This was used in experiments with various pressures (1-40 atm) and temperatures (1373-1673 K) under atmospheric conditions. The internal and external effectiveness factor was analyzed to determine the effects of high pressure. The intrinsic reaction kinetics of BERAU char was obtained using $n^{th}$ order reaction rate equations. The value was determined to be 203.8kJ/mol.

Study on the Co-firing of Sewage Sludge to a 80 kWth-scale Pulverized Coal Combustion System (80 kWth급 미분탄 연소 시스템에서 하수슬러지 혼소시 연소 특성 연구)

  • Chae, Taeyoung;Lee, Jaewook;Lee, Youngjae;Yang, Won
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.74-80
    • /
    • 2019
  • Thermochemical treatment of sewage sludge is an energy-intensive process due to its high moisture content. To save the energy consumed during the process, the hydrothermal carbonization process for sewage sludge can be used to convert sewage sludge into clean solid fuel without pre-drying. This study is aimed to investigate co-firing characteristics of the hydrothermally carbonated sewage sludge (HCS) to a pulverized coal combustion system. The purpose of the measurement is to measure the pollutants produced during co-firing and combustion efficiency. The combustion system used in this study is a furnace with a down-firing swirl burner of a $80kW_{th}$ thermal input. Two sub-bituminous coals were used as a main fuel, and co-firing ratio of the sewage sludge was varied from 0% to 10% in a thermal basis. Experimental results show that $NO_x$ is 400 ~ 600 ppm, $SO_x$ is 600 ~ 700 ppm, and CO is less than 100 ppm. Experimental results show that stable combustion was achieved for high co-firing ratio of the HCS. Emission of $NO_x$ and $SO_x$ was decreased for higher co-firing ratio in spite of the higher nitrogen contents in the HCS. In addition, it was found that the pollutant emission is affected significantly by composition of the main fuel, regardless of the co-firing ratios.

Oxy Combustion Characteristics of Anthracite in a 100 kWth Circulating Fluidized Bed System (100 kWth 급 순환유동층 시스템에서 무연탄 순산소연소 특성 연구)

  • Moon, Ji-Hong;Jo, Sung-Ho;Mun, Tae-Young;Park, Sung-Jin;Kim, Jae-Young;Nguyen, Hoang Khoi;Lee, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.400-407
    • /
    • 2019
  • Oxy-combustion with a circulating fluidized bed (Oxy-CFBC) technology has been paid attention to cope with the climate change and fuel supply problem. In addition, Oxy-CFBC technology as one of the methods for carbon dioxide capture is an eco-friendly that can reduce air pollutants, such as $SO_2$, NO and CO through a flue gas recirculation process. The newly developed $100kW_{th}$ pilot-scale Oxy-CFBC system used for this research has been continuously utilizing to investigate oxy-combustion characteristics for various fuels, coals and biomasses to verify the possibility of fuel diversification. The anthracite is known as a low reactivity fuel due to a lot of fixed carbon and ash. Therefore, this study aims not only to improve combustion efficiency of an anthracite, but also to capture carbon dioxide. As a result, compared to air-combustion of sub-bituminous coal, oxy-combustion of anthracite could improve 2% combustion efficiency and emissions of $SO_2$, CO and NO were reduced 15%, 60% and 99%, respectively. In addition, stable operating of Oxy-CFBC could capture above 94 vol.% $CO_2$.

Characteristics of Coal Devolatilization and Spontaneous Combustion at Low Temperatures (저온영역에서 석탄의 탈휘발 및 자연발화 특성 연구)

  • Sung Min Yoon;Seok Hyeong Lee;Tae Hwi An;Myung Won Seo;Sang Won Lee;Dae Sung Kim;Tae-Young Mun;Sung Jin Park;Sang Jun Yoon;Ji Hong Moon;Jae Goo Lee;Jong Hoon Joo;Ho Won Ra
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.288-296
    • /
    • 2023
  • Coal is abundantly available compared to other energy sources and is used as a versatile energy resource worldwide. To address the environmental issues stemming from conventional coal utilization, efforts are underway to develop clean coal utilization technologies, with IGCC technology being a notable example. In IGCC plants, coal is subjected to a CMD process where both drying and pulverization are achieved by supplying hot air. However, if the temperature of the supplied hot air is excessively high, it can lead to devolatilization and spontaneous combustion, thereby compromising the stable operation of the CMD process. This study aimed to measure the devolatilization and spontaneous combustion temperatures of different types of bituminous coal, and to explore their correlations with the characteristics of the coals. Six coal types exhibited devolatilization between 350 and 400 ℃, while three coal types showed devolatilization at temperatures exceeding 400 ℃. Spontaneous combustion ℃curred in one coal type below 100 ℃, six coal types between 100 and 150 ℃, and two coal types above 150 ℃. The measured initiation temperatures were compared with the coal characteristics including the oxygen, moisture, Fe2O3, and CaO content, the H/C ratio, and the O/C ratio to establish correlations. Regression analysis was used to calculate the regression coefficients and determination coefficients for each ignition temperature. It was found that 52.44% of the FC/VM data significantly influenced the volatile matter ignition temperature, and 59.10% of the Fe2O3 data significantly affected the spontaneous combustionignition temperature.

Situation of Geological Occurrences and Utilization, and Research Trends of North Korean Coal Resources (북한 석탄 자원의 부존 및 활용현황과 연구동향)

  • Sang-Mo Koh;Bum Han Lee;Otgon-Erdene Davaasuren
    • Economic and Environmental Geology
    • /
    • v.57 no.3
    • /
    • pp.281-292
    • /
    • 2024
  • North Korea relies heavily on coal as the primary energy source, playing an important role in all energy demand sectors except for the transportation sector. Approximately half of the total electricity is generated through coal-fired power plants, and coal is used to produce heat and power for all industrial facilities. Furthermore, coal has been a significant contributor to earning foreign currency through long-term exports to China. Nevertheless, since the 1980s, indiscriminate mining activities have led to rapid depletion of coal production in most coal mines. Aging mine facilities, lack of investment in new equipment, shortages of fuel and electricity, difficulties in material supply, and frequent damage from flooding have collectively contributed to a noticeable decline in coal production since the late 1980s. North Korea's coal deposits are distributed in various geological formations from the Proterozoic to the Cenozoic, but the most critical coal-bearing formations are Ripsok and Sadong formations distributed in the Pyeongnam Basin of the Late Paleozoic from Carboniferous to Permian, which are called as Pyeongnam North and South Coal Fields. Over 90% of North Korea's coal is produced in these coal fields. The classification of coal in North Korea differs from the international classification based on coalification (peat, lignite, sub-bituminous coal, bituminous coal, and anthracite). North Korean classification based on industrial aspect is classified into bituminous coal, anthracite, and low-grade coal (Chomuyeontan). Based on the energy factor, it is classified into high-calorie coal, medium calorie coal, and low-calorie coal. In North Korea, the term "Chomuyeontan" refers to a type of coal that is not classified globally and is unique to North Korea. It is a low-grade coal exclusively used in North Korea and is not found or used in any other country worldwide. This article compares North Korea's coal classification and the international coal classification of coal and provides insights into the geological characteristics, reserves, utilization, and research trends of North Korean coal resources. This study could serve as a guide for preparing scientific and industrial agendas related to coal collaboration between North Korea and South Korea.