• Title/Summary/Keyword: sub- and supercritical water

Search Result 46, Processing Time 0.019 seconds

Amino Acid Recovery from Brown Seaweed(Undaria pinnatifida) Using Subcritical Water Hydrolysis (아임계 수 가수분해를 이용한 미역으로부터 아미노산 회수)

  • Kwon, Kyung-Tae;Jung, Go-Woon;Chun, Byung-Soo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.747-751
    • /
    • 2010
  • The objective of this research were to produce amino acids from freezing-dried brown seaweed(Undaria pinnatifida) powder by sub- and supercritical water hydrolysis and to characterize the products. The hydrolysis was carried out in a batch type reactor consisting of 4.6 cm inside diameter and $200cm^3$ vessel and stir made of Hastelloy 276. A stir inside the reactor was continuously moving at 100 rpm. Brown seaweed powder and 100 mL of 1% acetic acid in distilled water were charged into the reactor at a ratio of 1:100(w/v). The applied conditions were $180{\sim}374^{\circ}C$, respectively for 1 hour. The total amino acid content was found to be significantly higher in brown seaweed hydrolyzed by low temperature comparing to high temperature. The amounts of low molecular weight amino acids(glycine, alanine, serine etc) were higher than that of high molecular weight amino acids. The maximum yields of amino acids were produced at low temperature($220^{\circ}C$) with acid catalyst.

The pH Reduction of the Recycled Aggregate Originated from the Waste Concrete by the scCO2 Treatment (초임계 이산화탄소를 이용한 폐콘크리트 순환골재의 중성화)

  • Chung, Chul-woo;Lee, Minhee;Kim, Seon-ok;Kim, Jihyun
    • Economic and Environmental Geology
    • /
    • v.50 no.4
    • /
    • pp.257-266
    • /
    • 2017
  • Batch experiments were performed to develop the method for the pH reduction of recycled aggregate by using $scCO_2$ (supercritical $CO_2$), maintaining the pH of extraction water below 9.8. Three different aggregate types from a domestic company were used for the $scCO_2$-water-recycled aggregate reaction to investigate the low pH maintenance of aggregate during the reaction. Thirty five gram of recycled aggregate sample was mixed with 70 mL of distilled water in a Teflon beaker, which was fixed in a high pressurized stainless steel cell (150 mL of capacity). The inside of the cell was pressurized to 100 bar and each cell was located in an oven at $50^{\circ}C$ for 50 days and the pH and ion concentrations of water in the cell were measured at a different reaction time interval. The XRD and SEM-EDS analyses for the aggregate before and after the reaction were performed to identify the mineralogical change during the reaction. The extraction experiment for the aggregate was also conducted to investigate the pH change of extracted water by the $scCO_2$ treatment. The pH of the recycled aggregate without the $scCO_2$ treatment maintained over 12, but its pH dramatically decreased to below 7 after 1 hour reaction and maintained below 8 for 50 day reaction. Concentration of $Ca^{2+}$, $Si^{4+}$, $Mg^{2+}$ and $Na^+$ increased in water due to the $scCO_2$-water-recycled aggregate reaction and lots of secondary precipitates such as calcite, amorphous silicate, and hydroxide minerals were found by XRD and SEM-EDS analyses. The pH of extracted water from the recycled aggregates without the $scCO_2$ treatment maintained over 12, but the pH of extracted water with the $scCO_2$ treatment kept below 9 of pH for both of 50 day and 1 day treatment, suggesting that the recycled aggregate with the $scCO_2$ treatment can be reused in real construction sites.

Evaluation of the CO2 Storage Capacity by the Measurement of the scCO2 Displacement Efficiency for the Sandstone and the Conglomerate in Janggi Basin (장기분지 사암과 역암 공극 내 초임계 이산화탄소 대체저장효율 측정에 의한 이산화탄소 저장성능 평가)

  • Kim, Seyoon;Kim, Jungtaek;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.469-477
    • /
    • 2016
  • To evaluate the $CO_2$ storage capacity for the reservoir rock, the laboratory scale technique to measure the amount of $scCO_2$, replacing pore water of the reservior rock after the $CO_2$ injection was developed in this study. Laboratory experiments were performed to measure the $scCO_2$ displacement efficiency of the conglomerate and the sandstone in Janggi basin, which are classified as available $CO_2$ storage rocks in Korea. The high pressurized stainless steel cell containing two different walls was designed and undisturbed rock cores acquired from the deep drilling site around Janggi basin were used for the experiments. From the lab experiments, the average $scCO_2$ displacement efficiency of the conglomerate and the sandstone in Janggi basin was measured at 31.2% and 14.4%, respectively, which can be used to evaluate the feasibility of the Janggi basin as a $scCO_2$ storage site in Korea. Assuming that the effective radius of the $CO_2$ storage formations is 250 m and the average thickness of the conglomerate and the sandstone formation under 800 m in depth is 50 m each (from data of the drilling profile and the geophysical survey), the $scCO_2$ storage capacity of the reservoir rocks around the probable $scCO_2$ injection site in Janggi basin was calculated at 264,592 metric ton, demonstrating that the conglomerate and the sandstone formations in Janggi basin have a great potential for use as a pilot scale test site for the $CO_2$ storage in Korea.

Immunomodulating activity of Sargassum horneri extracts in RAW264.7 macrophages (RAW264.7 대식세포에서 괭생이 모자반 추출물의 면역활성 증진 효과)

  • Kim, Dong-Sub;Sung, Nak-Yun;Park, Sang-Yun;Kim, Geon;Eom, Ji;Yoo, Jin-Gon;Seo, In-Ra;Han, In-Jun;Cho, Young-Baik;Kim, Kyung-Ah
    • Journal of Nutrition and Health
    • /
    • v.51 no.6
    • /
    • pp.507-514
    • /
    • 2018
  • Purpose: Sargassum horneri (S. horneri) is a species of brown macroalgae that is common along the coast of Japan and Korea. The present study investigated the immuno-modulatory effects of different types of S. horneri extracts in RAW264.7 macrophages. Methods: S. horneri was extracted by three different methods, hot water extraction, 50% ethanol extraction, and supercritical fluid extraction. Cell viability was then measured by MTT assay, while the production levels of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-6 (IL-6), and nitric oxide (NO) were measured by enzyme-linked immunosorbent assay and Griess assay, respectively. The expression and activation levels of inducible NO synthase (iNOS), mitogen-activated protein kinase (MAPK) and nuclear factor ${\kappa}B$ ($NF-{\kappa}B$) were examined by western blot analysis. Results: The three different S. horneri extracts were nontoxic against RAW 264.7 cells up to $50{\mu}g/mL$, among which treatment with hot water extract (HWE) of S. horneri significantly enhanced the production of TNF-${\alpha}$, IL-6, and NO in a dose-dependent manner. Hot water extract of S. horneri also increased the expression level of iNOS, suggesting that up-regulation of iNOS expression by HWE of S. horneri was responsible for the induction of NO production. In addition, treatment of RAW 264.7 macrophages with HWE of S. horneri increased the phosphorylation levels of ERK, p38 and JNK. Furthermore, the activation and subsequent nuclear translocation of $NF-{\kappa}B$ was enhanced upon treatment with HWE of S. horneri, indicating that HWE of S. horneri activates macrophages to secrete TNF-${\alpha}$, IL-6 and NO and induces iNOS expression via activation of the $NF-{\kappa}B$ and MAPKs signaling pathways. Conclusion: Taken together, these findings suggest that HWE of S. horneri possesses potential as a functional food with immunomodulatory activity.

Security and Safety Assessment of the Small-scale Offshore CO2 Storage Demonstration Project in the Pohang Basin (포항분지 해상 중소규모 CO2 지중저장 실증연구 안전성 평가)

  • Kwon, Yi Kyun;Chang, Chandong;Shinn, Youngjae
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.217-246
    • /
    • 2018
  • During the selection and characterization of target formations in the Small-scale Offshore $CO_2$ Storage Demonstration Project in the Pohang Basin, we have carefully investigated the possibility of induced earthquakes and leakage of $CO_2$ during the injection, and have designed the storage processes to minimize these effects. However, people in Pohang city have a great concern on $CO_2$-injection-intrigued seismicity, since they have greatly suffered from the 5.4 magnitude earthquake on Nov. 15, 2017. The research team of the project performed an extensive self-investigation on the safety issues, especially on the possible $CO_2$ leakage from the target formation and induced earthquakes. The target formation is 10 km apart from the epicenter of the Pohang earthquake and the depth is also quite shallow, only 750 to 800 m from the sea bottom. The project performed a pilot injection in the target formation from Jan. 12 to Mar. 12, 2017, which implies that there are no direct correlation of the Pohang earthquake on Nov. 15, 2017. In addition, the $CO_2$ injection of the storage project does not fracture rock formations, instead, the supercritical $CO_2$ fluid replaces formation water in the pore space gradually. The self-investigation results show that there is almost no chance for the injection to induce significant earthquakes unless injection lasts for a very long time to build a very high pore pressure, which can be easily monitored. The amount of injected $CO_2$ in the project was around 100 metric-tonne that is irrelevant to the Pohang earthquake. The investigation result on long-term safety also shows that the induced earthquakes or the reactivation of existing faults can be prevented successfully when the injection pressure is controlled not to demage cap-rock formation nor exceed Coulomb stresses of existing faults. The project has been performing extensive studies on critical stress for fracturing neighboring formations, reactivation stress of existing faults, well-completion processes to minimize possible leakage, transport/leakage monitoring of injected $CO_2$, and operation procedures for ensuring the storage safety. These extensive studies showed that there will be little chance in $CO_2$ leakage that affects human life. In conclusion, the Small-scale Offshore $CO_2$ Storage Demonstration Project in the Pohang Basin would not cause any induced earthquakes nor signifiant $CO_2$ leakage that people can sense. The research team will give every effort to secure the safety of the storage site.

Splenocyte-mediated immune enhancing activity of Sargassum horneri extracts (괭생이 모자반 추출물의 비장세포 면역활성 증강 효과)

  • Kim, Dong-Sub;Sung, Nak-Yun;Han, In-Jun;Lee, Byung-Soo;Park, Sang-Yun;Nho, Eun Young;Eom, Ji;Kim, Geon;Kim, Kyung-Ah
    • Journal of Nutrition and Health
    • /
    • v.52 no.6
    • /
    • pp.515-528
    • /
    • 2019
  • Purpose: This study examined the immunological activity and optimized the mixture conditions of Sargassum horneri (S. horneri) extracts in vitro and in vivo models. Methods: S. horneri was extracted using three different methods: hot water extraction (HWE), 50% ethanol extraction (EE), and supercritical fluid extraction (SFE). Splenocyte proliferation and cytokine production (Interleukin-2 and Interferon-γ) were measured using a WST-1 assay and enzyme-linked immunosorbent assay, respectively. The levels of nitric oxide and T cell activation production were measured using a Griess assay and flow cytometry, respectively. The natural killer (NK) cell activity was determined using an EZ-LDH kit. Results: Among the three different types of extracts, HWE showed the highest levels of splenocyte proliferation and cytokine production in vitro. In the animal model, three different types of extracts were administrated for 14 days (once/day) at 50 and 100 mg/kg body weight. HWE and SFE showed a high level of splenocyte proliferation and cytokine production in the with and without mitogen-treated groups, whereas EE administration did not induce the splenocyte activation. When RAW264.7 macrophage cells were treated with different mixtures (HWE with 5, 10, 15, 20% of SFE) to determine the optimal mixture ratio of HWE and SFE, the levels of nitric oxide and cytokine production increased strongly in the HWE with 5% and 10% of SFE containing group. In the animal model, HWE with 5% and 10% of SFE mixture administration increased the levels of splenocyte proliferation, cytokine production, and activated CD4+ cell population significantly, with the highest level observed in the HWE with 5% of SFE group. Moreover, the NK cell activity was increased significantly in the HWE with 5% of SFE mixture-treated group compared to the control group. Conclusion: The optimal mixture condition of S. horneri with immune-enhancing activity is the HWE with 5% of SFE mixture. These results confirmed that the extracts of S. horneri and its mixtures are potential candidate materials for immune enhancement.