DOI QR코드

DOI QR Code

Security and Safety Assessment of the Small-scale Offshore CO2 Storage Demonstration Project in the Pohang Basin

포항분지 해상 중소규모 CO2 지중저장 실증연구 안전성 평가

  • Kwon, Yi Kyun (Department of Geo-Environmental Sciences, Kongju National University) ;
  • Chang, Chandong (Department of Geology, Chungnam National University) ;
  • Shinn, Youngjae (Korea Institute of Geoscience and Mineral Resources)
  • 권이균 (공주대학교 지질환경과학과) ;
  • 장찬동 (충남대학교 지질환경과학과) ;
  • 신영재 (한국지질자원연구원 CO2지중저장연구단)
  • Received : 2018.05.14
  • Accepted : 2018.06.08
  • Published : 2018.06.30

Abstract

During the selection and characterization of target formations in the Small-scale Offshore $CO_2$ Storage Demonstration Project in the Pohang Basin, we have carefully investigated the possibility of induced earthquakes and leakage of $CO_2$ during the injection, and have designed the storage processes to minimize these effects. However, people in Pohang city have a great concern on $CO_2$-injection-intrigued seismicity, since they have greatly suffered from the 5.4 magnitude earthquake on Nov. 15, 2017. The research team of the project performed an extensive self-investigation on the safety issues, especially on the possible $CO_2$ leakage from the target formation and induced earthquakes. The target formation is 10 km apart from the epicenter of the Pohang earthquake and the depth is also quite shallow, only 750 to 800 m from the sea bottom. The project performed a pilot injection in the target formation from Jan. 12 to Mar. 12, 2017, which implies that there are no direct correlation of the Pohang earthquake on Nov. 15, 2017. In addition, the $CO_2$ injection of the storage project does not fracture rock formations, instead, the supercritical $CO_2$ fluid replaces formation water in the pore space gradually. The self-investigation results show that there is almost no chance for the injection to induce significant earthquakes unless injection lasts for a very long time to build a very high pore pressure, which can be easily monitored. The amount of injected $CO_2$ in the project was around 100 metric-tonne that is irrelevant to the Pohang earthquake. The investigation result on long-term safety also shows that the induced earthquakes or the reactivation of existing faults can be prevented successfully when the injection pressure is controlled not to demage cap-rock formation nor exceed Coulomb stresses of existing faults. The project has been performing extensive studies on critical stress for fracturing neighboring formations, reactivation stress of existing faults, well-completion processes to minimize possible leakage, transport/leakage monitoring of injected $CO_2$, and operation procedures for ensuring the storage safety. These extensive studies showed that there will be little chance in $CO_2$ leakage that affects human life. In conclusion, the Small-scale Offshore $CO_2$ Storage Demonstration Project in the Pohang Basin would not cause any induced earthquakes nor signifiant $CO_2$ leakage that people can sense. The research team will give every effort to secure the safety of the storage site.

포항분지 해상 중소규모 $CO_2$ 지중저장 실증 연구사업은 저장소 선정 및 저장소 특성화 연구 과정에서 $CO_2$ 지중저장 실증의 지진 유발 가능성과 누출 가능성에 대하여 진지하게 검토하고 $CO_2$ 지중저장 실증의 안정성을 확보하기 위한 많은 노력을 경주해 왔다. 그럼에도 불구하고 2017년 11월 15일 발생한 규모 5.4의 포항 지진으로 큰 피해를 입은 포항시와 시민들은 $CO_2$ 지중저장 실증의 지진 유발 가능성에 대하여 큰 우려를 가지고 있는 상황이다. 포항분지 해상 $CO_2$ 지중저장 실증 연구팀은 2017년 포항 지진 이후 포항 영일만 $CO_2$ 지중저장 실증의 안전성에 대하여 자체 조사를 수행하여, 2017년 포항 지진과 포항분지 영일만 해상 $CO_2$ 지중저장 실증의 관련성과 향후 본격적인 $CO_2$ 지중저장 실증이 수행될 경우 지진 유발 가능성이나 누출 가능성에 대하여 면밀하게 평가하였다. 자체 조사 결과, 포항분지 해상 중소규모 $CO_2$ 지중저장 실증 연구사업은 2017년 포항지진의 진앙과 약 10 km 떨어진 영일만 해역에 저장소가 위치하며, $CO_2$ 저장층의 심도도 해저면 아래 약 750-800 m 정도로서 포항 지진의 심도와 큰 차이를 보인다. 또한 포항분지 해상 중소규모 $CO_2$ 지중저장 실증 연구사업은 2017년 1월 12일부터 3월 12일까지 약 3개월간 $CO_2$ 시험 주입을 수행한 이후 수송체계 구축과 주입공 격상을 위해 $CO_2$ 주입 행위가 중지된 상황으로 2017년 11월 15일에 발생한 포항 지진과 직접적인 관련성을 찾기 어렵다. 무엇보다도 $CO_2$ 지중저장 기술의 개념이 지층을 파쇄하는 것이 아니라 염수와 같은 유체로 채워진 다공질 퇴적층에서 염수를 천천히 밀어내면서 초임계상의 $CO_2$를 주입한다는 측면에서 대용량의 $CO_2$를 장기간 주입하여 저장층의 압력이 크게 상승하는 경우를 제외하면 인간 사회에 피해를 가져오는 일정 규모 이상의 지진을 유발할 가능성이 크지 않은 것으로 분석되었다. 게다가 포항분지 해상 중소규모 $CO_2$ 지중저장 실증 연구사업의 $CO_2$ 시험 주입 규모가 약 100톤 정도로서 규모 5.0 이상의 지진을 유발할 수 있는 대규모 주입 행위가 없었기 때문에 2017년 포항 지진과의 연관성을 가정하는 것이 무리가 있다. 포항분지 해상 중소규모 $CO_2$ 지중저장 실증 연구사업의 연구팀은 자체 조사를 통해 향후 포항분지 해상 $CO_2$ 지중저장 실증 연구사업이 장기적으로 수행될 경우 지진 유발 가능성과 누출 가능성에 대하여도 평가를 수행하였다. 자체 평가 결과에 따르면, 저장층 상부의 덮개층이 파쇄되거나 주변 단층의 재활성화가 발생하지 않도록 정해진 범위에서 압력을 조절하면서 $CO_2$ 스트림을 주입할 경우 지진 유발이나 단층 재활성화를 초래할 가능성이 매우 희박한 것으로 분석되었다. 더불어, 포항분지 해상 중소규모 $CO_2$ 지중저장 실증 연구사업은 $CO_2$ 지중저장 실증 과정에서 주입된 $CO_2$ 스트림의 누출을 최소화하기 위해 저장소 인근 지층의 파쇄 압력, 저장소 인근 단층의 재활성화 압력, 주입공 누출을 방지하기 위한 완결 공정, 주입된 $CO_2$ 스트림의 누출 경로 파악과 거동 및 누출 모니터링, 안전한 $CO_2$ 저장을 위한 저장소 운영과 관련된 연구를 충실하게 수행하고 있으며, 연구팀의 자체 조사 결과 주입된 $CO_2$ 스트림이 인간 사회에 영향을 미칠 정도의 규모로 누출될 가능성은 크지 않은 것으로 평가되었다. 결론적으로 포항분지 해상 중소규모 $CO_2$ 지중저장 실증 연구사업은 인간이 감지할 정도의 지진 유발 및 주입된 $CO_2$ 스트림의 누출을 발생시킬 가능성이 크지 않으며, 비록 적은 가능성이지만, 지진이나 누출이 발생하지 않도록 지속적으로 안전성 확보를 위한 연구개발을 최우선적으로 수행할 계획이다.

Keywords

References

  1. Addis, M.A., Hanssen, T.H., Yassir, N., Willoughby, D.R., Enever, J., 1998, A comparison of leak-off test and extended leak-off test data for stress estimation, Eurock 98 Rock Mechanics in Petroleum Engineering, Trondheim, Norway, 131-140.
  2. Bai, M., Sun, J., Song, K., Li, L., Qiao, Z., 2015, Well completion and integrity evaluation for $CO_2$ injection wells, Renewable and Sustainable Energy Reviews, 45, 556-564. https://doi.org/10.1016/j.rser.2015.02.022
  3. Bohnenstiehl, D.R., Dziak, R.P., 2009, Mid-Ocean Ridge Seismicity, Earth Systems and Environmental Sciences, 837-851.
  4. Cappa, F., Rutqvist, J., 2011a, Impact of $CO_2$ geological sequestration on the nucleation of earthquakes, Geophysical Reseach Letters, 38, L17313.
  5. Cappa, F., Rutqvist, J., 2011b, Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of $CO_2$, International Jounal of Greenhouse Gas Control, 5, 336-346. https://doi.org/10.1016/j.ijggc.2010.08.005
  6. Chang, C.J., Y, Quach, N., Shin, Y.J., Song, I., Kwon, Y.K., 2016, Geomechanical characterization for the $CO_2$ injection test site, offshore Pohang Basin, SE Korea, 50th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, Houston, ARMA-2016-541.
  7. Cheon, Y., Son, M., Song, C.W., Kim, J.-S., Sohn, Y.K., 2012, Geometry and kinematics of the Ocheon Fault System along the boundary between the Miocene Pohang and Janggi basins, SE Korea, and its tectonic implications. Geosciences Journal, 16, 253-273. https://doi.org/10.1007/s12303-012-0029-0
  8. Cho, Ga., Cho, H., Park, N., 2016, A Study on Implementation and Deriving Future Tasks of The Korean National CCS Master Action Plan. Journal of Climate Change Research, 7(3), 237-247. https://doi.org/10.15531/ksccr.2016.7.3.237
  9. Choi, B.-Y., Park, Y.-C., Shinn, Y.-J., Kim, K.-Y., Chae, K.-T., Kim, J.-C., 2015, Preliminary results of numerical simulation in a small-scale $CO_2$ injection pilot site : 1. Prediction of $CO_2$ plume migration. Journal of the Geological Society of Korea, 51(5), 487-496. https://doi.org/10.14770/jgsk.2015.51.5.487
  10. Choi, S.J., 2018, Stratigraphy and evolution of the Pohang Basin, South Korea, MSc Thesis, Kongju National University, 145p (in Korean with English abstract).
  11. Energy & Climate Policy Institute, 2010, http://enerpol.net/epbrd/bbs/board.php?bo_table=bbs6&wr_id=219&sca=%EA%B8%B0%ED%9B%84%EB%B3%80%ED%99%94&page=4.
  12. EPA, 2000, Carbon Dioxide as a Fire Suppressant: Examining the Risks, Environmental Protection Agency (EPA), Washington, D.C., USA, 54p.
  13. Foulgera, G.R., Wilson, M.P., Gluyas, J.G., Julian, B.R., Davies, R.J., 2018, Global review of human-induced earthquakes, Earth-Science Reviews, 178, 438-514. https://doi.org/10.1016/j.earscirev.2017.07.008
  14. GCCSI, 2015, What is CCS?, Global Carbon Capture and Storage Institute (GCCSI), Retrieved from http://www.globalccsinstitute.com/understanding-ccs/what-is-ccs.
  15. Gemmer, L., Hansen, O., Iding, M., Leary, S., Ringrose, P., 2012, Geomechanical response to $CO_2$ injection at Krechba, In Salah, Algeria, First Break, 30(2), 79-84.
  16. GGK, 2010, Korean National CCS Master Action Plan, Green Growth Korea (GGK), Sejong, Korea, 1-28.
  17. Giese, R., Henninges, J., Luth, S., Morozova, D., Schmidt-Hattenberger, C., Wurdemann, H., Zimmer, M., Cosma, C., Juhlin, C., $CO_2$ SINK Group, 2009, Monitoring at the $CO_2$ SINK site: A concept integrating geophysics, geochemistry and microbiology, Energy Procedia, 1, 2251-2259. https://doi.org/10.1016/j.egypro.2009.01.293
  18. Gjonnes, M., Cruz, A.M., Horsrud, P., Holt, R.M., 1998, Leak-off tests for horizontal stress determination?. Journal of Petroleum Science and Engineering, 20(1), 63-71. https://doi.org/10.1016/S0920-4105(97)00053-3
  19. Global energy statistical yearbook, 2006, $CO_2$ emissions from fuel combustion, Retrieved from https://yearbook.enerdata.net/2015/#$CO_2$-emissions-data-from-fuel-combustion.html
  20. Global energy statistical yearbook, 2016, $CO_2$ emissions from fuel combustion, Retrieved from https://yearbook.enerdata.net/2015/#$CO_2$-emissions-data-from-fuel-combustion.html
  21. Haimson, B.C., Cornet, F.H., 2003, ISRM suggested methods for rock stress estimation - Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPHF), International Journal of Rock Mechanics and Mining Sciences, 40, 1011-1020. https://doi.org/10.1016/j.ijrmms.2003.08.002
  22. Holloway, S., Karimjee, A., Akai, M., Pipatti, R., Rypdal, K., 2006, IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Chapter 5: Carbon Dioxide Transport, Injection and Gological Storage, OECD and International energy agency (IEA), Paris, France, 32p.
  23. IEA, 2005, World Energy Outlook 2004, OECD and International Energy Agency report, Paris, France.
  24. IEA, 2016a, Key World Energy Statistics, OECD and International Energy Agency report, Paris, France.
  25. IEA, 2016b, $CO_2$ Emissions from Fuel Combustion, OECD and International Energy Agency report, Paris, France.
  26. IEA, 2017, $CO_2$ emissions from fuel combustion Highlights (2017 edition), OECD and International Energy Agency report, Paris, France.
  27. IEAGHG, 2013, Induced Seismicity and Its Implications for $CO_2$ Storage Risk, Report, International Energy Agency Greenhouse Gas R&D Program(IEAGHG), Cheltenham, United Kingdom.
  28. IPCC, 2005, IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442p.
  29. Kang, K., Huh, C., Kang, S.-G., 2015, A Numerical Study on the $CO_2$ Leakage Through the Fault During Offshore Carbon Sequestration. Journal of the Korean Society for Marine Environment and Energy, 18(2), 94-101 (in Korean with English). https://doi.org/10.7846/JKOSMEE.2015.18.2.94
  30. KEEI, 2016, WORLD ENERGY ISSUE Insight 16-3, Korea Energy Economics Institute (KEEI), Ulsan, Korea, 3.
  31. KEEI, 2017, WORLD ENERGY ISSUE Insight 17-3, Korea Energy Economics Institute (KEEI), Ulsan, Korea, 3-15.
  32. KIGAM, 2014a, Site Selection for Pilot-Scale $CO_2$ Geologic Storage in the Korean Peninsula, Annual Report 2012-0008916, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, Korea.
  33. KIGAM, 2014b, Management of the Demonstration Project for 10,000-ton $CO_2$ Geologic Storage in Onshore Sedimentary Basin, Annual Report 2012-0008915, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, Korea.
  34. KIGAM, 2014c, Characterization of storage strata and development of basis design technology for demonstration of $CO_2$ geological storage, Final Report GP2012-030-2014(2), Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, Korea, 441 (in Korean with English abstract).
  35. Kim, J.-M., 2009, Status and Prospect of Carbon Dioxide Storage Technologies. Journal of Industrial and Engineering Chemistry, KIC News, 12(2), 31-41.
  36. Kim, J.-Y., Jung, C.-Y., and Yoon, S., 1991, Early and Middle Miocene dike swarms and regional tectonic stress field in the Janggi peninsula (1). Journal of the Geological Society of Korea, 27, 330-337. (in Korean with English abstract)
  37. Kim, M.-C., Gihm, Y.S., Son, E.-Y., Son, M., Hwang, I.G., Shinn, Y.J., Choi, H., 2015, Assessment of the potential for geological storage of $CO_2$ based on structural and sedimentologic characteristics in the Miocene Janggi Basin, SE Korea. Journal of the Geological Society of Korea, 51(3), 253-271 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.3.253
  38. Kim, N.H., Jung, H.S., Kim, G.D., Jeong, H.Y., Shin, H.D., Kwon, Y.K., Choe, J.G., 2018a, The stability assessment of an aquifer in Pohang Yeongil bay due to injecting $CO_2$. Journal of Engineering Geology, in press.
  39. Kim, S.-K., Chang, C.D., Shinn, Y.J., Kwon, Y.K., 2018b, Characteristics of Pohang $CO_2$ geological sequestration test site. Journal of Engineering Geology, in press.
  40. KMA, 2016, Monthly report of marine data(2016.10), 11-1360000-000817-06, Korea Meteorological Administration (KMA), Seoul, Korea, 647p.
  41. KMA, 2018, 2017 Seismological annual report, 11-1360000-0000104-10, Korea Meteorological Administration (KMA), Seoul, Korea, 301p.
  42. KNU, 2015, Small-scale $CO_2$ Injection-Demonstration Project in Offshore Pohang Basin, Annual Report 20132010-201760, Kongju National University, Gongju, Korea.
  43. KNU, 2016a, Small-scale $CO_2$ Injection-Demonstration Prokect in Offshore Pohang Basin, Final Report 20132010-201760, Kongju National University, Gongju, Korea.
  44. KNU, 2016b, Demonstration-scale Offshore $CO_2$ Storage Project in Pohang Basin, Korea, Annual Report 20162010-201980(1), Kongju National University, Gongju, Korea.
  45. KNU, 2016c, Basic design of the CCS platform: Structural design and analysis, Kongju National University, Gongju, Korea.
  46. KNU, 2017a, Demonstration-scale Offshore $CO_2$ Storage Project in Pohang Basin, Korea, Annual Report 20162010-201980(2), Kongju National University, Gongju, Korea.
  47. KNU, 2017b, Upgrading and improvement of injection well for small-scale $CO_2$ storage demonstration in Pohang Basin, Plan 20172010202040, Kongju National University, Gongju, Korea.
  48. KNU, 2018, Report on safety inspection, Kongju National University, Gongju, Korea.
  49. Kwon, Y.K., 2016, Review of $CO_2$ storage projects and driving strategy of $CO_2$ storage program in Korea, Electric Power and Energy, 2(2), 167-185(in Korean).
  50. Lee, H.K., Shin, Y.-J., Ong, S.H., Woo, S.W., Park, K.G., Lee, T.J., Moon, S.W., 2017, Fault reactivation potential of an offshore $CO_2$ storage site, Pohang Basin, South Korea. Journal of Petroleum Science and Engineering, 152, 427-442. https://doi.org/10.1016/j.petrol.2017.03.014
  51. Lee, S.B., Lim, J.H., Lyu, Y.S., Yeo, S.Y., Hong, Y.D., 2011, Characterization of greenhouse gasgby emission regions and sectors using GHG-CAPSS(2006). Journal of climate change research, 2(2), 69-77.
  52. Li, Q., Liu, G., 2016, Geologic Carbon Sequestration, Chapter 13. Risk Assessment of the Geological Storage of $CO_2$: A Review, Springer International Publishing, Basel, Switzerland, 249-284.
  53. Manuel, A., Roset, X., Rio, J.D., Toma, D.M., Carreras, N., Panahi, S.S., Garcia-Benadi, A., Owen, T., Cadena, J., 2012, Ocean bottom seismometer: Design and test of a measurement system for marine seismology, Sensors, 12(3), 3693-3719. https://doi.org/10.3390/s120303693
  54. MOF, 1999, Seismic design standard of the port and fishing, Ministry of oceans and fisheries, Sejong, Korea.
  55. MOF, 2014, Korea design standard of the port and fishing, 11-1192000-000184-14, Ministry of oceans and fisheries, Sejong, Korea.
  56. MOLIT, 1997, Study on the Earthquake resistant design criteria, Ministry of Land, infrastructure and transport, Sejong, Korea.
  57. Moon, H.-M., Kim, H.-J., Shin, S.-J., Lee, Y.-I., Kwon, S.-H., Kwon, Y.K., 2018, Design and construction study of an injection facility for $CO_2$ offshore storage. Journal of Engineering Geology, in press.
  58. NETL, 2012, Monitoring, Verification, and Accounting of $CO_2$ Stored in Deep Geological Farmations - 2012 Update, National Energy Technology Laboratory (NETL), Albany, USA, 140p.
  59. NETL, 2017, Monitoring, Verification, and Accounting (MVA) for Geologic Storage Projects, 2017 revised edition, National Energy Technology Laboratory (NETL), Albany, USA, 88p.
  60. NPD, 2013, $CO_2$ storage atlas: Norwegian Sea, Norwegian Petroleum Directorate (NPD), Stavanger, Norway, 60p.
  61. Orcutt, J.A., Kennett, B.L.N., 1976, Structure of the East Pacific Rise from an Ocean Bottom Seismometer Survey, Geophysical Journal International Astronomy & Geophysics, 45, 305-320.
  62. Park, M.-H., Lee, C.S., Kim, B.-Y., Kim, J.-H., Kim, K.J., Shinn, Y.J., 2018, Preliminary results of the pre-injection monitoring survey at an offshore $CO_2$ injection site in th Yeongil Bay. Journal of Engineering Geology, in press.
  63. POSCO, 2013, Carbon report, Pohang Iron and Steel Company (POSCO), Seoul, Korea, 72p.
  64. Rinaldi, A.P., Jeanne, P., Rutqvist, J., Cappa, F., Guglielmi, Y., 2014, Effects of fault-zone architecture on earthquake magnitude and gas leakage related to $CO_2$ injection in a multi-layered sedimentary system, Greenhouse Gases: Science and Technology, 4, 99-120. https://doi.org/10.1002/ghg.1403
  65. Rinaldi, A.P., Vilarrasa, V., Rutqvist, J., Cappa, F., 2015, Fault reactivation during $CO_2$ sequestration: effects of well orientation on seismicity and leakage, Greenhouse Gases: Science and Technology, 5, 645-656. https://doi.org/10.1002/ghg.1511
  66. Rutqvist, J., Birkholzer, J., Cappa, F., Tsang, C.F., 2007, Estimating maximum sustainable injection pressure during geological sequestration of $CO_2$ using coupled fluid flow and geomechanical fault slip analysis, Energy Conversion and Management, 48, 1798-1807. https://doi.org/10.1016/j.enconman.2007.01.021
  67. Rutqvist, J., Rinaldi, A.P., Cappa, F., Jeanne, P., Mazzoldi, A., Urpi, L., Guglielmi, Y., Vilarrasa, V., 2016, Fault activation and induced seismicity in geologic carbon storage-Lessons learned from recent modeling studies. Journal of Rock Mechanics and Geotechnical Engineering, http://dx.doi.org/10.1016/j.jrmge.2016.09.001.
  68. Rutqvist, J., 2012, The geomechanics of $CO_2$ storage in deep sedimentary formations, Geotechnical and Geological Engineering, 30, 525-551. https://doi.org/10.1007/s10706-011-9491-0
  69. Son, M., 1998, Formation and evolution of the Tertiary Miocene basins in southeastern Korea: Structural and paleomagnetic approaches. Ph.D. Thesis, Pusan National University, Busan, 233p (in Korean with English abstract).
  70. Song Y., Park, M., Jeon, J., Lee, J. M., Cho, C. -S., Lee, T. J., 2012, Construction of a microseismicity observation network with borehole accelerometers for monitoring geothermal reservoir. Journal of the Korean Society of Mineral and Energy Resources Engineers, 49(2), 487-497 (in Korean with English abstract).
  71. Streit, J.E., Hillis, R.R., 2004, Estimating fault stability and sustainable fluid pressures for underground storage of $CO_2$ in porous rock, Energy 29, 1445-1456. https://doi.org/10.1016/j.energy.2004.03.078
  72. Vidal-Gilbert, S., Nauroy, J.F., Brosse, E., 2009, 3D geomechanical modeling for $CO_2$ geologic storage in the Dogger carbonates of the Paris basin, International Jounal of Greenhouse Gas Control, 3, 288-299. https://doi.org/10.1016/j.ijggc.2008.10.004
  73. Vidal-Gilbert, S., Tenthorey, E., Dewhurst, D., King, J.E., Van Ruth, P., Hillis, R., 2010, Geomechanical analysis of the Naylor field, Otway basin, Australia: implications for $CO_2$ injection and storage, International Jounal of Greenhouse Gas Control, 4, 827-839. https://doi.org/10.1016/j.ijggc.2010.06.001
  74. Vilarrasa, V., Carrerac J., 2015a, Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which $CO_2$ could leak, Proceedings of the National Academy of Sciences of the United States of America, 112(19), 5938-5943. https://doi.org/10.1073/pnas.1413284112
  75. Vilarrasa, V., Carrerac J., 2015b, Reply to Zoback and Gorelick: Geologic carbon storage remains a safe strategy to significantly reduce $CO_2$ emissions, Proceedings of the National Academy of Sciences of the United States of America, 112(33), E4511. https://doi.org/10.1073/pnas.1511302112
  76. Vilarrasa, V., Makhnenko, R., Gheibi, S., 2016, Geomechanical analysis of the influence of $CO_2$ injection location on fault stability. Journal of Rock Mechanics and Geotechnical Engineering, http://dx.doi.org/10.1016/j.jrmge.2016.06.006.
  77. White, A.J., Traugott, M.O., Swarbrick, R.E., 2002, The use of leak-off tests as means of predicting minimum in situ stress, Petroleum Geoscience, 8, 189-193. https://doi.org/10.1144/petgeo.8.2.189
  78. Won, K.-S., Lee, D.-S., Kim, S.-J., Choi, S.-D., 2018, Drilling and completion of $CO_2$ injection well in the offshore Pohang Basin, Yeongil Bay. Journal of Engineering Geology, in press.
  79. Yun, H., Min, K.D., Moon, H.S., Lee, H.K., and Yi, S.S., 1991, Biostratigraphic, chemostratigraphic, paleomagnetostratigraphic, and tephrochronological study for the correlation of Tertiary formations in southern part of Korea: Regional tectonics and its stratigraphical implication in the Pohang basin, Korea. Journal of the Paleontological Society of Korea, 1, 1-12.
  80. Zhou Q., Birkholzer J.T., Mehnert E., Lin Y.F., Zhang K., 2010, Modeling basin- and plume scale processes of $CO_2$ storage for full-scale deployment, Ground Water, 48(4), 494-514. https://doi.org/10.1111/j.1745-6584.2009.00657.x
  81. Zhou Q., Birkholzer J.T., 2011, On scale and magnitude of pressure build-up induced by large-scale geologic storage of $CO_2$, Greenhouse Gases: Science and Technology, 1, 11-20. https://doi.org/10.1002/ghg3.1
  82. Zoback, M.D., Barton, C.A., Brudy, M., Castillo, D.A., Finkbeiner, T., Grollimund, B.R., Moos, D.B., Peska, P., Ward C.D., Wiprut, D.J., 2003, Determination of stress orientation and magnitude in deep wells, International Journal of Rock Mechanics and Mining Sciences, 40, 1049-1076. https://doi.org/10.1016/j.ijrmms.2003.07.001
  83. Zoback, M.D., Gorelick, S.M., 2012, Earthquake triggering and large-scale geologic storage of carbon dioxide, Proceedings of the National Academy of Sciences of the United States of America, 109(26), 10164-10168. https://doi.org/10.1073/pnas.1202473109
  84. Zoback, M.D., Gorelick, S.M., 2015, To prevent earthquake triggering, pressure changes due to $CO_2$ injection need to be limited, Proceedings of the National Academy of Sciences of the United States of America, 112(33), E4510. https://doi.org/10.1073/pnas.1508533112

Cited by

  1. Review of Seawater Intrusion in Western Coastal Regions of South Korea vol.13, pp.6, 2021, https://doi.org/10.3390/w13060761