• 제목/요약/키워드: Pohang earthquake

검색결과 163건 처리시간 0.022초

2017년 포항지진으로 인하여 발생된 최대지반가속도 (PGA)예측 (Prediction of Peak Ground Acceleration Generated from the 2017 Pohang Earthquake)

  • 지현우;한상환
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.211-217
    • /
    • 2018
  • The Pohang earthquake with a magnitude of 5.4 occurred on November 15, 2018. The epicenter of this earthquake located in south-east region of the Korean peninsula. Since instrumental recording for earthquake ground motions started in Korea, this earthquake caused the largest economic and life losses among past earthquakes. Korea is located in low-to moderate seismic region, so that strong motion records are very limited. Therefore, ground motions recorded during the Pohang earthquake could have valuable geological and seismological information, which are important inputs for seismic design. In this study, ground motions associated by the 2018 Pohang earthquake are generated using the point source model considering domestic geological parameters (magnitude, hypocentral distance, distance-frequency dependent decay parameter, stress drop) and site amplification calculated from ground motion data at each stations. A contour map for peak ground acceleration is constructed for ground motions generated by the Pohang earthquake using the proposed model.

지진시나리오 기반의 포항지역 액상화위험도 작성 연구 (Liquefaction Hazard Map Based on in Pohang Under Based on Earthquake Scenarios)

  • 백우현;최재순;안재광
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.219-224
    • /
    • 2018
  • The The purpose of this study is to investigate the actual liquefaction occurrence site in Pohang area and to analyze the ground characteristics of Pohang area using the data of the National Geotechnical Information DB Center and to calculate the liquefaction potential index. Based on the results, the distribution of soil classification in Pohang area and the risk of liquefaction under various earthquake accelerations were prepared. As a result of the study, soils in Pohang has the soil characteristics that can cause the site amplification phenomenon. In the analysis through liquefaction hazard maps under earthquake scenarios, it is found that the liquefaction occurred in the area of Heunghae town is more likely to be liquefied than other areas in Pohang. From these results, it is expected that the study on the preparation of liquefaction hazard maps will contribute to the preparation of countermeasures against liquefaction by predicting the possibility in the future.

포항지진에 대한 원자력발전소 구조물 및 기기의 지진응답분석 (Seismic Response Analysis of Nuclear Power Plant Structures and Equipment due to the Pohang Earthquake)

  • 임승현;최인길
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.113-119
    • /
    • 2018
  • The probabilistic seismic safety assessment is one of the methodology to evaluate the seismic safety of the nuclear power plants. The site characteristics of the nuclear power plant should be reflected when evaluating the seismic safety of the nuclear power plant. The Korea seismic characteristics are strong in high frequency region and may be different from NRC Regulatory Guide 1.60, which is the design spectrum of nuclear power plants. In this study, seismic response of a nuclear power plant structure by Pohang earthquake (2017.11.15. (KST)) is investigated. The Pohang earthquake measured at the Cheongsong seismic observation station (CHS) is scaled to the peak ground acceleration (PGA) of 0.2 g and the seismic acceleration time history curve corresponding to the design spectrum is created. A nuclear power plant of the containment building and the auxiliary buildings are modeled using OPENSEES to analyze the seismic response of the Pohang earthquake. The seismic behavior of the nuclear power plant due to the Pohang earthquake is investigated. And the seismic performances of the equipment of a nuclear power plant are evaluated by the HCLPF. As a result, the seismic safety evaluation of nuclear power plants should be evaluated based on site-specific characteristics of nuclear power plants.

포항지진에 의한 필로티 건축물 피해조사 및 피해원인 분석 (Damage Investigation of Pilotis Structures and Analysis of Damage Causes by Pohang Earthquake)

  • 김주찬;신승훈;오상훈
    • 대한건축학회논문집:구조계
    • /
    • 제35권3호
    • /
    • pp.3-10
    • /
    • 2019
  • On November 15, 2017, an earthquake($M_L5.4$) occurred in Pohang. Pohang earthquake was the second largest earthquake since earthquake was observed in Korea, but structural damage caused by earthquake was biggest. Structural damage caused by Pohang earthquake was mainly caused by schools and pilotis, above all damage to pilotis was outstanding. This is because area where pilotis structures are concentrated is located near epicenter, and seismic performance of pilotis structures is not excellent compared with general structures. In this study, described results of damage investigation and analysis of damage causes through analysis of pilotis Structures on 131 buildings that were investigated immediately after Pohang earthquake. In addition, cause of damage was analyzed through analysis of seismic wave. Investigation site was selected to Jangseong-dong, where damage occurred in large numbers. Damage level was classified into A, B, and C level by measuring residual crack width and story drift of structural members.

지진 취약성 평가 모델 교차검증: 경주(2016)와 포항(2017) 지진을 대상으로 (A Cross-Validation of SeismicVulnerability Assessment Model: Application to Earthquake of 9.12 Gyeongju and 2017 Pohang)

  • 한지혜;김진수
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.649-655
    • /
    • 2021
  • 본 연구는 경주시를 대상으로 수행한 선행연구를 바탕으로 도출된 최적의 지진 취약성 평가 모델을 타 지역에 적용하여 그 성능을 교차 검증(cross-validation)하고자 한다. 테스트 지역은 2017 포항지진(Pohang Earthquake)이 발생한 포항시이며, 선행연구와 동일한 영향인자 및 피해현황 관련 데이터셋을 구축하였다. 검증 데이터 셋은 무작위로 추출해 구축하였으며, 경주시의 랜덤 포레스트(random forest, RF) 기반의 모델에 적용하여 예측 정확도를 도출하였다. 경주시의 모델(success) 및 예측(prediction) 정확도는 100%, 94.9%이며, 포항시 검증 데이터 셋을 적용해 예측 정확도를 확인한 결과 70.4%로 나타났다.

포항 지진의 진원 깊이 연구 (A Study of Hypocentral Depth of Pohang Earthquake)

  • 정태웅;이영민;모하메드 자파르;정진아
    • 지구물리와물리탐사
    • /
    • 제21권2호
    • /
    • pp.125-131
    • /
    • 2018
  • 2017년 11월 15일 포항지진(규모 5.4)은 깊이효과로 경주지진(규모 5.8) 보다 피해가 더 컸으나, 정확한 깊이가 확증되지 않고 있다. 진원 깊이를 진원재결정을 통하여 역산한 결과, 대부분의 모델의 진원 깊이가 얕은 표층으로 도출된 반면, 지각구조가 가장 근접한 모델은 6.0 ~ 11.5 km 구간의 깊이로 산출되었다. 지온분석에서는 7.5 km 근방에서 $300^{\circ}C$의 온도가 관찰되어 지진유발층의 사례에 입각한 포항지진의 진원은 근접한 모델로 얻어진 7 km 근방인 것으로 추정되어진다.

Opendata 기반 포항 및 경주지진에 의한 건물손상 평가 (Earthquake Damage Assessment of Buildings Using Opendata in the Pohang and the Gyeongju Earthquakes)

  • 임승현;양범주;전해민
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.121-128
    • /
    • 2018
  • Severe earthquakes can cause damage to society both socially and economically. An appropriate initial response can alleviate damage from severe earthquakes. In order to formulate an appropriate initial response, it is necessary to identify damage situations in societies; however, it is difficult to grasp this information immediately after an earthquake event. In this study, an earthquake damage assessment methodology for buildings is proposed for estimating damage situations immediately after severe earthquakes. A response spectrum database is constructed to provide response spectra at arbitrary locations from earthquake measurements immediately after the event. The fragility curves are used to estimate the damage of the buildings. Earthquake damage assessment is performed from the response spectrum database at the building scale to provide enhanced damage condition information. Earthquake damage assessment for Gyeongju city and Pohang city were conducted using the proposed methodology, when an earthquake occurred on September 12, 2016, and November 15, 2017. Results confirm that the proposed earthquake damage assessment effectively represented the earthquake damage situation in the city to decide on an appropriate initial response by providing detailed information at the building scale.

9.12 경주지진 및 11.15 포항지진의 구조손상 포텐셜 비교연구 (Comparative Analysis of Structural Damage Potentials Observed in the 9.12 Gyeongju and 11.15 Pohang Earthquakes)

  • 이철호;김성용;박지훈;김동관;김태진;박경훈
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.175-184
    • /
    • 2018
  • In this paper, comparative analysis of the 9.12 Gyeongju and 11.15 Pohang earthquakes was conducted in order to provide probable explanations and reasons for the damage observed in the 11.15 Pohang earthquake from both earthquake and structural engineering perspectives. The damage potentials like Arias intensity, effective peak ground acceleration, etc observed in the 11.15 Pohang earthquake were generally weaker than those of the 9.12 Gyeongju earthquake. However, in contrast to the high-frequency dominant nature of the 9.12 Gyeongju earthquake records, the spectral power of PHA2 record observed in the soft soil site was highly concentrated around 2Hz. The base shear around 2 Hz frequency was as high as 40% building weight. This frequency band is very close to the fundamental frequency of the piloti-type buildings severely damaged in the northern part of Pohang. Unfortunately, in addition to inherent vertical irregularity, most of the damaged piloti-type buildings had plan irregularity as well and were non-seismic. All these contributed to the fatal damage. Inelastic dynamic analysis indicated that PHA2 record demands system ductility capacity of 3.5 for a structure with a fundamental period of 0.5 sec and yield base shear strength of 10% building weight. The system ductility level of 3.5 seems very difficult to be achievable in non-seismic brittle piloti-type buildings. The soil profile of the PHA2 site was inversely estimated based on deconvolution technique and trial-error procedure with utilizing available records measured at several rock sites during the 11.15 Pohang earthquake. The soil profile estimated was very typical of soil class D, implying significant soil amplification in the 11.15 Pohang earthquake. The 11.15 Pohang earthquake gave us the expensive lesson that near-collapse damage to irregular and brittle buildings is highly possible when soil is soft and epicenter is close, although the earthquake magnitude is just minor to moderate (M 5+).

Damage Proxy Map (DPM) of the 2016 Gyeongju and 2017 Pohang Earthquakes Using Sentinel-1 Imagery

  • Nur, Arip Syaripudin;Lee, Chang-Wook
    • 대한원격탐사학회지
    • /
    • 제37권1호
    • /
    • pp.13-22
    • /
    • 2021
  • The ML 5.8 earthquake shocked Gyeongju, Korea, at 11:32:55 UTC on September 12, 2016. One year later, on the afternoon of November 15, 2017, the ML 5.4 earthquake occurred in Pohang, South Korea. The earthquakes injured many residents, damaged buildings, and affected the economy of Gyeongju and Pohang. The damage proxy maps (DPMs) were generated from Sentinel-1 synthetic aperture radar (SAR) imagery by comparing pre- and co-events interferometric coherences to identify anomalous changes that indicate damaged by the earthquakes. DPMs manage to detect coherence loss in residential and commercial areas in both Gyeongju and Pohang earthquakes. We found that our results show a good correlation with the Korea Meteorological Administration (KMA) report with Modified Mercalli Intensity (MMI) scale values of more than VII (seven). The color scale of Sentinel-1 DPMs indicates an increasingly significant change in the area covered by the pixel, delineating collapsed walls and roofs from the official report. The resulting maps can be used to assess the distribution of seismic damage after the Gyeongju and Pohang earthquakes and can also be used as inventory data of damaged buildings to map seismic vulnerability using machine learning in Gyeongju or Pohang.

2017 포항지진에 의한 필로티형 내력벽건물의 구조손상 분석 (Investigation of Structural Damage in Bearing Wall Buildings with Pilotis by 2017 Pohang Earthquake)

  • 엄태성;이승제;박홍근
    • 한국지진공학회논문집
    • /
    • 제23권1호
    • /
    • pp.9-18
    • /
    • 2019
  • In 2017 Pohang Earthquake, a number of residential buildings with pilotis at their first level were severely damaged. In this study, the results of an analytical investigation on the seismic performance and structural damage of two bearing wall buildings with pilotis are presented. The vibration mode and lateral force-resisting mechanism of the buildings with vertical and plan irregularity were investigated through elastic analysis. Then, based on the investigations, methods of nonlinear modeling for walls and columns at the piloti level were proposed. By performing nonlinear static and dynamic analyses, structural damages of the walls and columns at the piloti level under 2017 Pohang Earthquake were predicted. The results show that the area and arrangement of walls in the piloti level significantly affected the seismic safety of the buildings. Initially, the lateral resistance of the piloti story was dominated mainly by the walls resisting in-plane shear. After shear cracking and yielding of the walls, the columns showing double-curvature flexural behavior contributed significantly to the residual strength and ductility.