• Title/Summary/Keyword: sub- and supercritical water

Search Result 46, Processing Time 0.018 seconds

Design of a direct-cycle supercritical CO2 nuclear reactor with heavy water moderation

  • Petroski, Robert;Bates, Ethan;Dionne, Benoit;Johnson, Brian;Mieloszyk, Alex;Xu, Cheng;Hejzlar, Pavel
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.877-887
    • /
    • 2022
  • A new reactor concept is described that directly couples a supercritical CO2 (sCO2) power cycle with a CO2-cooled, heavy water moderated pressure tube core. This configuration attains the simplification and economic potential of past direct-cycle sCO2 concepts, while also providing safety and power density benefits by using the moderator as a heat sink for decay heat removal. A 200 MWe design is described that heavily leverages existing commercial nuclear technologies, including reactor and moderator systems from Canadian CANDU reactors and fuels and materials from UK Advanced Gas-cooled Reactors (AGRs). Descriptions are provided of the power cycle, nuclear island systems, reactor core, and safety systems, and the results of safety analyses are shown illustrating the ability of the design to withstand large-break loss of coolant accidents. The resulting design attains high efficiency while employing considerably fewer systems than current light water reactors and advanced reactor technologies, illustrating its economic promise. Prospects for the design are discussed, including the ability to demonstrate its technologies in a small (~20 MWe) initial system, and avenues for further improvement of the design using advanced technologies.

Environmentally Assisted Cracking of Alloys at Temperatures near and above the Critical Temperature of Water

  • Watanabe, Yutaka
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.237-242
    • /
    • 2008
  • Physical properties of water, such as dielectric constant and ionic product, significantly vary with the density of water. In the supercritical conditions, since density of water widely varies with pressure, pressure has a strong influence on physical properties of water. Dielectric constant represents a character of water as a solvent, which determines solubility of an inorganic compound including metal oxides. Dissociation equilibrium of an acid is also strongly dependent on water density. Dissociation constant of acid rises with increased density of water, resulting in drop of pH. Density of water and the density-related physical properties of water, therefore, are the major governing factors of corrosion and environmentally assisted cracking of metals in supercritical aqueous solutions. This paper discusses importance of "physical properties of water" in understanding corrosion and cracking behavior of alloys in supercritical water environments, based on experimental data and estimated solubility of metal oxides. It has been pointed out that the water density can have significant effects on stress corrosion cracking (SCC) susceptibility of metals in supercritical water, when dissolution of metal plays the key role in the cracking phenomena.

Extraction of Athabasca Oil Sand with Sub- and Supercritical Water (아임계 및 초임계수를 이용한 Athabasca 오일샌드의 추출)

  • Park, Jung Hoon;Son, Sou Hwan;Baek, Il Hyun;Nam, Sung Chan
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.281-286
    • /
    • 2009
  • Bitumen extraction and sulfur removal from Athabasca oil sand were conducted using water in sub- and supercritical condition. Bitumen yield in micro reactor was investigated in the pressure range of 15~30 MPa, the temperature of 360 and $380^{\circ}C$ and water density $0.074{\sim}0.61g/cm^3$ for 0~120 min. Bitumen yield increased with reaction pressure irrespective of temperature and dramatically increased in especially supercritical region due to hydrogen formed from water gas shift reaction. Total amount of gas product decreased with reaction pressure but the portion of sulfur and hydrogen increased a little with increasing pressure to 25 and 30 MPa. It is seen that supercritical condition was favourable to the hydrogen formation and sulfur removal. Bitumen yield and sulfur removal from original oil sand reached a maximum 22% and 40% respectively in supercritical condition(the reaction time of 60 min at $380^{\circ}C$ and 25 or 30 MPa).

Characteristics of Extraction of Daidzein and Genistein in Soybean Using Sub/Supercritical Fluids (아임계/초임계 유체를 이용한 콩에 포함된 Daidzein과 Genistein의 추출특성)

  • Choi, Du Young;Zheng, Jinzhu;Row, Kyung Ho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.609-613
    • /
    • 2005
  • Daidzein and genistein were extracted from Korean soybean by supercritical $CO_2$ and sub/supercritical water. The extracted sample was analyzed by reversed-phase high performance liquid chromatography (RP-HPLC). The retention time, retention factor, column efficiency, column selectivity and resolution of aglycons were compared with the change in the temperature and pressure of supercritical fluid and ethanol concentration. The characteristics of extraction of daidzein and genistein were more affected by ethanol concentration using supercritical $CO_2$. The most desirable extraction yield was obtained by supercritical $H_2O$ with $400^{\circ}C$ and 250 bar. Generally, the extraction yield of aglycons increased over 10 times using supercritical $CO_2$ than sub/supercritical $H_2O$.

Numerical analysis of Poiseuille-Rayleigh-Bénard convection in supercritical carbon dioxide

  • Wang, Zhipeng;Xu, Hong;Chen, Chong;Hong, Gang;Song, Zhenguo;Zhang, Yaoli
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3540-3550
    • /
    • 2022
  • The supercritical carbon dioxide (S-CO2) Brayton cycle is an important energy conversion technology for the fourth generation of nuclear energy. Since the printed circuit heat exchanger (PCHE) used in the S-CO2 Brayton cycle has narrow channels, Rayleigh-Bénard (RB) convection is likely to exist in the tiny channels. However, there are very few studies on RB convection in supercritical fluids. Current research on RB convection mainly focuses on conventional fluids such as water and air that meet the Boussinesq assumption. It is necessary to study non-Boussinesq fluids. PRB convection refers to RB convection that is affected by horizontal incoming flow. In this paper, the computational fluid dynamics simulation method is used to study the PRB convection phenomenon of non-Boussinesq fluid-supercritical carbon dioxide. The result shows that the inlet Reynolds number (Re) of the horizontal incoming flow significantly affects the PRB convection. When the inlet Re remains unchanged, with the increase of Rayleigh number (Ra), the steady-state convective pattern of the fluid layer is shown in order: horizontal flow, local traveling wave, traveling wave convection. If Ra remains unchanged, as the inlet Re increases, three convection patterns of traveling wave convection, local traveling wave, and horizontal flow will appear in sequence. To characterize the relationship between traveling wave convection and horizontal incoming flow, this paper proposes the relationship between critical Reynolds number and relative Rayleigh number (r).

Comparison of Extraction Methods for Aglycone isoflavones from Korean Soybean (토종콩에 포함된 비배당체 이소플라본의 추출 방법 비교)

  • Lee Kwang Jin;Row Kyung Ho
    • KSBB Journal
    • /
    • v.19 no.6 s.89
    • /
    • pp.421-426
    • /
    • 2004
  • The extraction and separation of isoflavones from Korean soybean were peformed by various mechanical and chemical extraction methods. They included solvent extraction, stirring, supersonification and sub/supercritical water extraction. From the experimental results of the variation of solvent extraction by change in composition, the increase in extraction of a specific compound by stirring or supersonic energy, and the application of supercritical fluid with superior solvating power over solvents, the sonification was the most desirable extraction method in extracting aglycone isoflavones, daidzein and genistein from Korean soybean.

Saccharification of lignocellulosics by Supercritical Water (초임계수를 이용한 목질바이오매스의 당화 특성)

  • Choi, Joon-Weon;Lim, Hyun-Jin;Jo, Tae-Su;Han, Gyu-Sung;Choi, Don-Ha
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.38-45
    • /
    • 2007
  • To characterize thermo-chemical feature of sugar conversion of woody biomass, poplar wood ($Populus\;alba{\times}glandulosa$) powder was treated with supercritical water system. Supercritical water treatment (SCWT) was performed for 60 seconds at different temperatures (subcritical zone 350; supercritical zone $300,\;400,\;425^{\circ}C$) under two pressures $230{\pm}10atm$ as well as $330{\pm}10atm$, respectively, using flow type system. After separation of solid residues from SCWT products, the monomeric sugars in aqueous part converted from poplar wood powder were quantitatively determined by high performance anionic exchange chromatography [HPAEC] equipped with PAD detector and Carbo Pac PA10 column. As the temperature treated increased, the degradation of poplar wood powder was enhanced and ca 83% of woody biomass was dissolved into the water at $425^{\circ}C$. However, the pressure didn't help the degradation of biomass components. At subcritical temperature range, xylose was first formed by degradation of xylan, which is main hemicellulose component in hardwood species, while cellulose degradation started at the transition zone between sub and supercritical conditions and was remarkably accelerated at the supercritical temperature. In the supercritical water system the maximum yield of monomeric sugars amounts to ca. 7.3% based on oven dried wood weight at $425^{\circ}C$.

  • PDF

The Synergistic Effect of Organophosphorus and Dithiocarbamate Ligands on Metal Extraction in Supercritical CO2

  • Koh, Moon-Sung;Park, Kwang-Heon;Yang, Doo-Hyun;Kim, Hak-Won;Kim, Hong-Doo
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.423-427
    • /
    • 2005
  • The bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex-272) and sodium diethyl- dithiocarbamate (NaDDC) ligands were used to extract of metal ions ($Cd^{2+},\;Co^{2+},\;Cu^{2+},\;Pb^{2+},\;Zn^{2+}$) in supercritical $CO_2$. Experiments showed a strong synergistic effect and better extraction efficiency if the two ligands were used together. In-situ UV-visible observation indicates that NaDDC in the water/supercritical $CO_2$ started to decompose slowly. The synergistic effect seems to come from the deprotonation of the organophosphorus ligand by amines from the decomposed NaDDC. The enhancing role of amines was confirmed using the mixture of Cyanex-272 and diethylamine(DEA) in the metal extraction.

EXPERIMENTAL INVESTIGATIONS ON HEAT TRANSFER TO CO2 FLOWING UPWARD IN A NARROW ANNULUS AT SUPERCRITICAL PRESSURES

  • Kim, Hwan-Yeol;Kim, Hyung-Rae;Kang, Deog-Ji;Song, Jin-Ho;Bae, Yoon-Yeong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.155-162
    • /
    • 2008
  • Heat transfer experiments in an annulus passage were performed using SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt Generation), which was constructed at KAERI(Korea Atomic Energy Research Institute), to investigate the heat transfer behaviors of supercritical $CO_{2}$. $CO_{2}$ was selected as the working fluid to utilize its low critical pressure and temperature when compared with water. The mass flux was in the range of 400 to 1200 $kg/m^{2}s$ and the heat flux was chosen at rates up to 150 $kW/m^{2}$. The selected pressures were 7.75 and 8.12 MPa. At lower mass fluxes, heat transfer deterioration occurs if the heat flux increases beyond a certain value. Comparison with the tube test results showed that the degree of heat transfer deterioration in the heat flux was smaller than that in the tube. In addition, the Nusselt number correlation for a normal heat transfer mode is presented.

Development and Application of Micromodel for Visualization of Supercritical CO2 Migration in Pore-scale (공극 규모에서의 초임계상 이산화탄소 거동 가시화를 위한 마이크로모델의 개발과 적용)

  • Park, Bogyeong;Lee, Minhee;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.73-82
    • /
    • 2015
  • Despite significant effects on macroscopic migration and distribution of CO2 injected during geological sequestration, only limited information is available on wettability in microscopic scCO2-brine-mineral systems due to difficulties in pore-scale observation. In this study, a micromodel had been developed to improve our understanding of how scCO2 flooding and residual characteristics of porewater are affected by the wettability in scCO2-water-glass bead systems. The micromodel (a transparent pore structure made of glass beads and glass plates) in a pressurized chamber provided the opportunity to visualize scCO2 spreading and porewater displacement. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through an imaging system. Measurement of contact angles of residual porewater in micromodels were conducted to estimate wettability in a scCO2-water-glass bead system. The measurement revealed that the brine-3M NaCl solution-is a wetting fluid and the surface of glass beads is water-wet. It is also found that the contact angle at equilibrium decreases as the pressure decreases, whereas it increases as the salinity increases. Such changes in wettability may significantly affect the patterns of scCO2 migration and porewater residence during the process of CO2 injection into a saline aquifer at high pressures.