• Title/Summary/Keyword: students′ conceptions

Search Result 288, Processing Time 0.026 seconds

The Effect of an Alternative Experiment for the Formation of Student's Conceptions about the Magnetic Fields of a Permanent Magnet by Cognitive Styles (초등학교 학생들의 자기장 개념 분석과 인지양식의 차이에 따른 대안실험의 효과)

  • Oh, Kwang-Tek;Youn, Suk Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.5
    • /
    • pp.159-167
    • /
    • 2016
  • We have examined the perceptions of 6th grade elementary school students' conceptions on the magnetic fields of a permanent magnet by cognitive style. Students' conceptions on the magnetic fields of permanent magnet after the iron powder experiment are grouped into four models; Partial Distribution Model (PDM), Pole Separation Model (PSM), Homogeneous Distribution Model (HDM), and Field Model (FM). After the experiment to observe the magnetic field of the permanent magnet with compass, the students' conceptions are grouped into three models; Pole Separation Model (PSM), Complex Homogeneous Distribution Model (CHDM), and Field Model (FM). And after the application of the alternative experimental method to observe the magnetic field with only one compass, students' conceptions on magnetic field has been enhanced in both field-dependent and general-cognitive groups of students.

Patterns of Designing Tools Experiments with Types of Force Conceptions in Elementary School Students (초등학생의 힘 개념에 따른 연모 실험 설계의 유형)

  • Kwon, Sung-Gi;Park, Jong-Du
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.3
    • /
    • pp.583-595
    • /
    • 2004
  • The purpose of this study was to identify whether the elementary school students force conceptions may influence on designing tools experiments. Four questions with multiple choices and reasons for those choices were asked to identify scientific/alternative force conception. Also four tasks for tools experiments matched to each force conceptions were developed into open questions in hypothesizing. controlling variables and methods of experiments. Forty elementary students were selected from 4 classes in sixth grade of a school in Daegu city. The major findings of this study were that the types of force conceptions can be classified into scientific and alternative conceptions. The patterns of designing experiments could be identified with types of hypothesis, controlling variables and methods of experiments in each four tools experiments. But students those who had scientific force conception did not better in hypothesis, methods of controlling variables and results for simple experiment than those who had alternative force conceptions. These results imply that students' force conception did not influence on designing tools experiments. The assumption that scientific conception could improve designing experiments was not guaranteed by this results.

Elementary School Students형 Conceptions of Buoyance related with Cognitive Levels (초등학생의 부력 개념 형성과 인지 수준의 관계)

  • 권도현;권성기
    • Journal of Korean Elementary Science Education
    • /
    • v.19 no.1
    • /
    • pp.131-143
    • /
    • 2000
  • The unit of a buoyant force included in the 7th national science curriculum for 6th grade students. On the contrary, it seldom that students' conception about buoyant phenomena is studied, even though there has been many studies of students' conceptions of basic science contents. The purpose of this study was to survey the elementary school students' conceptions of a buoyant force, to analyze their cognitive levels, and to explore the relationships between them. Sixth grade students (total numbers is 192) were selected .from 5 .lasses in two elementary schools in a local city of Kyungsangdo. They were asked to respond two kinds of test, which are the Logical Thinking Ability (GALT) to investigate students' cognitive levels and the Buoyant Force Questionnaire (BFQ). We developed BFQ test, based on the 7th national science curriculum for 6th grade and the previous researches of a buoyant force. We, qualitatively, analysed students' frequency of responses about a buoyant force and their types of explanation, and, quantitatively, analysed the relationships between cognitive levels and conceptions of a buoyant force with SPSS/ PC 7.0 programmes. The results of cognitive level showed that half of 6th grade students were in the concrete operational stage, 43.2% in the transitional stage, 6.8% in the formal stage. However, their sub-logical thinking abilities in a combinational, conservational, controlling variables, proportional, probability and correlational logic were very fluctuated from 91% to 8%. The results that only 4.8% of elementary students had correct conceptions of a buoyant force suggest that 6th grade students had great difficulties in understanding of that concept. Their difficulties would originated from the frequent common-sense explanations of a buoyant phenomena in terms of the weight or the unique properties or the contact area of an object or with/without air. Furthermore students' explanations, frequently, changed with context of problems of a buoyant force. Scheffe test of quantitative results that elementary students in the concrete level had 50.6% of concept formation in a buoyant force, the transitional level 54.5%, and in the formal operational level 62.8% showed significant differences of conceptions of a buoyant force with cognitive levels. Therefore the concrete operational elementary students had more difficulties of understanding of a buoyant force than the transitional and formal level, which is required to higher cognitive levels. This conclusion have implications that the unit of a buoyant force have to be presented with concrete activities for majority of students who are in concrete and transitional levels.

  • PDF

Context-dependency of Students' Conceptions in Optics: Focused on Vision & Mirror Image (광학분야에서 학생 개념의 상황 의존성: 시각과 거울상을 중심으로)

  • Kwon, Gyeong-Pil;Bang, So-Yoon;Lee, Sung-Muk;Lee, Gyoung-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.3
    • /
    • pp.406-414
    • /
    • 2006
  • This study investigated 7th grade students' context dependency on explanations about propagating path of light in three different contextual problems: observation of an object, observation of an object's image in a mirror, and observation of one's own face reflection in a mirror. Researchers examined student response in each context through interviews. The students were classified into four groups according to their explanations for the three different contexts. Each group was redivided into two or three subgroups in accordance with their conceptual features. After that, researchers investigated the characteristics of each subgroup. Main findings of the study indicated that (1) group 1 students' conceptions differed in each context; (2) group 2 students showed scientific conceptions in C1 context but in C2 context they showed visual ray conceptions or image misconceptions; (3) group 3 students did not show scientific conceptions in C3 context by strong misconceptions about one's own face reflection in the mirror. Also, this paper discussed the educational implications of the results.

An Analysis of the Conceptions about the Nature Phenomenon Using SBF Conceptual Representation in the 6th Students (SBF Conceptual Representation을 활용한 초등학교 6학년 학생들의 자연현상 개념 분석)

  • Moon, Byoung-Chan;Kim, Hai-Gyoung
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The purpose of this study was to analysis the 6th students' conceptions of the nature phenomenon focused on the systematic characteristics. For this study, 12 students of the 6th grades participated in special class for testing their conceptions about the water cycle in the earth system. And we analyzed the outcomes of students' conceptions based on SBF conceptual representation. The results indicate that most of the subjects perceived that the water cycle in earth system wasn't complex system maintaining its existence and functions as a whole through the interaction of its parts but simple system maintaining some actions between atmosphere and hydrosphere, geosphere, biosphere(biological world). And they didn't perceive the characteristics of the water cycle whose all parts must be presented the change of volume between vapor and water, glacier proposing the total hydro-volume are established in the earth system. Based on the results, it was suggested that the main goals of the schools' science education should be to provide students who understand the water cycle system as attaching importance to form with the skills needed to coherent understanding of the essential qualities for the nature phenomenon system.

  • PDF

An approach to development of scientific thinking skills through science inquiry play of analogy (과학적 사고력의 신장을 위한 과학비유탐구놀이 학습방법의 구안)

  • 현동걸
    • Journal of Korean Elementary Science Education
    • /
    • v.17 no.1
    • /
    • pp.61-73
    • /
    • 1998
  • This research suggests science inquiry play of analogy as a teaming method to help the students in concrete operational stage to develop scientific thinking skills and to understand abstract science conceptions. The research focuses on/considers the characteristics and merits of the science inquiry plays, and the learning method by analogical reasoning. This learning through the science inquiry play of analogy can be considered as a meta-model for scientific thinking skill. The learning has the following processes: 1) Students analogize the abstract science conceptions and facts into play-type activities including the concrete contents such as students themselves, their physical-sensory motions, concrete objects, play methods, and play rules. 2) Students as analogized objects play a role physically and sensuously according to the methods and rules analogized in the play. 3) Students find out the concrete contents included in the science inquiry play of analogy, draw the results, and deduce the new conceptions from the results by reflective thinking and analogical reasoning.

  • PDF

The Instructional Effect of a Four-stage Problem Solving Approach Visually Emphasizing the Molecular Level of Matter upon Students' Conceptions and Problem Solving Ability (물질의 분자 수준을 시각적으로 강조하는 4단계 문제 해결식 수업이 학생의 개념과 문제 해결 능력에 미치는 효과)

  • Noh, Tae-Hee;Moon, Kyung-Moon
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.3
    • /
    • pp.313-321
    • /
    • 1997
  • The purpose of this study was to investigate the instructional effect of a four-stage problem solving approach visually emphasizing the molecular level of matter upon students' conceptions and problem solving ability. On the basis of the research results regarding molecular representation in learning chemistry, problem-solving instruction, and the effect of visual materials, the instructional strategy was developed while considering Korean educational situations. The treatment and control groups (2 classes) were selected from a girls' high school in Seoul and taught about stoichiometry, gas, liquid, solid, and solution for 13 weeks. For the treatment group, 52 charts were supplied in order to emphasize the molecular level of matter and/or 4 stage problem solving strategy-understanding, planning, solving, and reviewing. For the control group, traditional instruction was used. Before the instructions, the Group Assessment of Logical Thinking and the Spatial Ability Test were administered, and their scores were used as covariate and blocking variable, respectively. After the instructions, students' conceptions and problem solving ability were measured by the Chemistry Conceptions Test (CCT) and the Chemistry Problem Solving Ability Test (CPSAT), respectively. The results indicated that the CCT scores of the treatment group were significantly higher than those of the control group. The students in the treatment group also exhibited less misconceptions than those in the control group. However, there was not significant difference for the CPSAT scores. No interaction with students' spatial ability was found for both students' conceptions and problem solving ability. Educational implications are discussed.

  • PDF

A Study of Kindergarden, Elementary, and Middle School Students' Conception Types and Trend of Grade Related to Evaporation and Conditions of Evaporation Activities (증발과 증발 조건에 관한 활동에서 유.초.중학교 학생들의 개념 유형 및 학년별 경향성에 관한 연구)

  • Cho, Boo-Kyung;Ko, Young-Mi;Kim, Hyo-Nam;Paik, Seong-Hey;Park, Jae-Won;Park, Jin-Ok;Im, Myoung-Hyuk
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.2
    • /
    • pp.286-298
    • /
    • 2002
  • This study was to investigate the K-8 grade students' conception types and trend of grade related to evaporation and conditions of evaporation activities. Twenty-five students were random sampled and they were interviewed in-depth during designed activities related to evaporation and conditions of evaporation. The data were analyzed qualitatively. The students' conceptions related to evaporation activities were divided into 5 types. The conceptions related to conditions of evaporation were divided into 5 types, too. Students' conceptions gradually changed to scientific conceptions with grade. But alternative conceptions were continued also.

THE STRUCTURES OF THE ALTERNATIVE CONCEPTIONS OF PRESERVICE SECONDARY TEACHERS ON SEASONAL CHANCES (계절 변화에 대한 예비 중등교사의 대안개념의 구조)

  • Oh, Jun-Young;Park, Sung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.69-88
    • /
    • 2005
  • This study was to understand the components that influence preservice secondary teachers' conceptions about 'seasonal changes' We selected 74 university science education students among whom 23 were in the second, 23 in the third, and 28 in the fourth year. The data collected from the paper-pencil test and individual interview with students. The results of this study show that the students had considerable apparent alternative conceptions, and that the 'distance theory' had most important effects on their alternative conceptions. It can be said that preservice secondary teachers' initial models of the seasonal change have their origin in their belief sets (specific theory) related to 'seasonal change', on the basis of which they can interpret their observations and cultural information with the constraints of a naive frame-work of physics. The structures and possible sources of their alternative conceptions for overcoming these alternative conceptions were also discussed. Implications for preservice science teacher education related to the results were discussed.

The Characteristics of "States of Matter" Concept Attributes of 3rd to 6th Grade Elementary School Students

  • Choi, Jung-In;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.6
    • /
    • pp.415-427
    • /
    • 2016
  • This study analyzed the attributes of the conceptions of $3^{rd}$ to $6^{th}$ grade elementary school students on three states of matter and investigated the characteristics of the classified results of various examples of matter by grades. Through discussion activities, we confirmed the stabilization of conception attributions. For this study, 113 participants from two $3^{rd}$ to $6^{th}$ grade elementary school classes were selected. The concentration analysis (C-factor) and normalized gain (G-factor) of the conceptions for the quantitative analysis of the conception changes were used. The elementary school students retained different percentages of the attributes for states of matter. The characteristic of the grades were different between the 3rd grade and other grades. Based on these results, we pointed out the problems with the present teaching methods in science textbooks and stated the advantages of the effects of the representation of mixtures.