• Title/Summary/Keyword: strut shape

Search Result 50, Processing Time 0.029 seconds

Evaluation of Cost-Effectiveness on High-Strength Steel Pipe Strut and Its Application (고강도 강관버팀보 현장적용 및 경제성 평가)

  • La, Seung-Min;Lee, Jong-Gu;Lee, Yong-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.511-520
    • /
    • 2008
  • The steel pipe strut for a means of the retaining structure has been used generally in North America, Europe and China so far. However, Korea and Japan, two countries are much familiar with H-shape steel strut having its anisotropic strength on two different axes(named as strong and weak axes), even though they recognize the steel pipe's excellence of structural function associated with its compressive ability. This trend is mainly due to a number of its field application, accumulated know-hows and workmanship etc. This paper introduces particular features of a high-strength steel pipe strut in comparison with the H-shape steel strut and its application for two excavation sites in Seoul. As a result of field verification, the high-strength pipe steel strut is more effective than the H-shape steel strut in terms of construction costs, schedules, constructibility and structural stability.

  • PDF

Metallic Damper Shape and Cyclic Behavior for the Seismic Capacity Improvement of Building Structures (건축구조물의 내진성능 향상을 위한 강재댐퍼 형상 및 이력 거동)

  • Lee, Hyun-Ho;Kim, Seh-Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.123-130
    • /
    • 2010
  • The aim of this paper is a seismic performance evaluation of metallic damper devices which are efficient in workability and installation process. For this V shape and S shape dampers is considered. The strut figures of dampers are V shape and S shape and, the research parameters are strut height and angle of the dampers. ABAQUS program is used for nonlinear finite element analysis. The analysis is performed with the hysteretic curve that has maximum displacement with 50mm and has increased progressive. As a results of evaluating the yield strength, maximum strength and energy dissipation capacity of each device, V and S shape have a good strength capacity and the devices with strut angle $60^{\circ}$ and strut height 140 and 200mm are evaluated stable in seismic behaviors. The response of S shape is more efficient than that of V shape. In the yield strength estimation process, proposed formula can not estimate the yield strength of V and S shape dampers. Even though, the formula can not consider the variation of strut heights and strut angles. Finally the S shape damper is recommended in seismic performance than V shape damper.

Development of a Strut Mount with High Reliability by Improving Durability (내구성 향상을 통한 고 신뢰성 Strut Mount 개발)

  • Chung, Chan-Hong
    • Journal of Applied Reliability
    • /
    • v.11 no.1
    • /
    • pp.31-41
    • /
    • 2011
  • A strut mount is an important part of vehicles which reduces the vibration and the impact transmitted from the wheels while supporting a shock absorber and a coil spring. Rubber compounding, shape design, and process design technologies are important components to improve the functionality of a strut mount such as durability, static, dynamic, and torsional characteristics. Among them the rubber compounding technology is the key technology which dominates the quality of a strut mount. In this study a strut mount with high reliability has been developed by adopting new rubber compounding and improving the shape of the inner plate and the isolator. Through the tests for prototypes it has been shown that the durability has been improved more than 2.5 times, from about 60,000 cycles to about 160,000 cycles.

Rocking Behavior of Steel Damper Shape (강재댐퍼 형상에 따른 록킹거동)

  • Lee, Hyun-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.45-52
    • /
    • 2020
  • In this study, performance experiments were performed on the shape of steel dampers that affect the rocking behavior. Three types of strut shapes of SI type, SV type and SS type were considered as experimental variables. As a result of the experiment, the capacity to resist the moment and drift ratio according to the strut shape of the steel damper was evaluated as very close. Finally, it was evaluated that the SV type steel damper has stable deformation and energy dissipation capability. As a result of the evaluation of the proposed damper transmission force, it is considered that the damper transmission force is evaluated larger than the applied horizontal force, and it is necessary to supplement it.

Rocking Behavior of Clamped Shape Metallic Damper (꺽쇠형 강재 댐퍼의 록킹 거동)

  • Lee, Hyun-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.27-34
    • /
    • 2019
  • This study proposes a technique to dissipate the energy of a rocking wall installed on a frame by using a metallic damper. The rocking behavior is to turn left and right about the wall vertical axis. The development system is a method of dissipating energy by installing a damper which is the like on a large displacement portion. Experimental results showed that in case of shorter strut make strength capacity increasement and in case of longer strut make deformation capacity increasement. The higher the strut height, the better the energy dissipation capacity. The proposed equation for estimating the steel damper strength applied to this study is a straight type strut damper. However, it is not suitable for calculation of the strength of clamped type strut damper where both flexural behavior and shear behavior are mixed.

Hysteretic Behaviors of Metallic Dampers with the Various Slit Shape (슬릿형상에 따른 강재댐퍼의 이력거동)

  • Lee, Hyun Ho;Kim, Seh Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.199-208
    • /
    • 2011
  • The purpose of this study is to evaluate of the strength and deformation capacity of metallic dampers with the variable slit shape. For this purpose, 12 metallic damper specimens were prepared and shear testing was performed. According to the test results, the S shaped metallic damper with the strut height of 200mm and angle of $60^{\circ}$ shows better hysteretic performance than any other specimens. By making a comparison between the yield strength in test and the proposed strength formula, test results shows larger yield strength than calculation method.

Rocking Behavior of Steel Dampers according to Strut Shapes and Heights of Steel dampers (강재 댐퍼의 스트럿 형상과 높이에 따른 록킹 거동)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.45-52
    • /
    • 2019
  • In this study, the seismic strengthening technique considering the rocking behavior of the wall was developed. The rocking system rotates left and right around the vertical axis of the wall. The development system is a method of dissipating energy by installing a damper which was attached at a large displacement portion. The damper was made of a steel material, and the shape and height of the strut were selected as variables. Experimental results showed that in case of shorter strut make strength capacity increasement and in case of longer strut make deformation capacity increasement. As a result of comparing the abilities according to I and S type strut shapes, it was evaluated that S type has better seismic performance.

High Strength Steel Pipe Strut Field Applicability Evaluation through case studies of Domestic Constuction Projects (국내 적용사례 분석을 통한 고강도 강관버팀보의 현장 적용성 평가)

  • La, Seung-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.457-464
    • /
    • 2010
  • Ever since the introduction of high strength steel pipe strut(POSTRUT) in 2008, there has been over 50 applications domestically. The merits of construction period reduction and cost savings have been well reported abroad in countries such as America, Europe and China but ever in domestic projects or ground condidtions. 25 actual construction projects were investigated and statistically analyzed to evaluate the quantitative effects of POSTRUT. Also the construction projects along with the cautions that should be taken and the structural behavior differences between POSTRUT and H-section struts are briefly described in this paper.

  • PDF

Models for Relative Density and Compressive Strength of Open-Cell Ceramics with Hollow Struts (공동골격을 가진 개방셀 세라믹스의 상대밀도와 압축강도 모델)

  • 정한남;현상훈
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.11
    • /
    • pp.1139-1150
    • /
    • 1997
  • A model for predicting the relative density and the compressive strength of open-cell ceramics with three-dimensional network structure was proposed through the interpretation of their macrostructure and fracture mechanics. The equation predicting the relative density was derived under the assumption that the open-cell structure was a periodic array of the tetrakaidecahedron unit cell consisting of cylindrical struts containing the internal hollow with the shape of a triangular prism. The model for compressive strength of open-cell ceramics with the hollow strut was also developed by modifying conventional model which based on fracture behavior of them subjected to the compressive stress. Both the relative density and the compressive strength were expressed in terms of the ratio of the strut diameter to the length together with the ratio of the hollow size to the strut diameter. The proposed model for the relative density and the compressive strength of the alumina-zirconia composite with open-cell structure were accorded well with the experimental values, whereas Gibson-Ashby and Zhang's model did not show such a good agreement.

  • PDF

Fatigue Life Prediction of Strut Rubber Mount for Passenger Car (승용차용 스트러트 고무마운트의 피로수명 예측)

  • Lee, Hak-Joo;Kim, Wan-Doo;Cho, Seong-Do-Seong;Kim, Chang-Wook
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.298-303
    • /
    • 2000
  • A procedure to predict the fatigue life of rubber components based on the signed principal strain method was proposed. A tension-compression rubber specimen with Jang-gu shape was designed and principal strain distribution was obtained by using the nonlinear finite element analysis. Finite element analysis and fatigue test of strut rubber mount were conducted to evaluate the fatigue life prediction procedure proposed. A procedure was employed to predict the fatigue life of strut rubber mount. Predicted fatigue lives have a good agreement with tested lives within a factor of 3.

  • PDF