• Title/Summary/Keyword: structured

Search Result 8,156, Processing Time 0.038 seconds

Post Occupancy Evaluation of the Forest Experience Centers for Children (유아숲체험장의 이용후 평가)

  • Kang, Tae-Sun;Lee, Myung-Woo;Jeong, Moon-Sun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.2
    • /
    • pp.109-123
    • /
    • 2017
  • Due to the positive effect of forest space for child development, the creation and operation of forest activity space of various organizations is increasing in quantity; however, the research on practical space design and management program is insufficient. Therefore, the purpose of this study is to evaluate the space and management programs of the forest experience centers through the post-occupancy evaluation of teachers and preschoolers participating in forest activities. To do this, we analyzed the selected twelve sites through field survey, class observation, and interviews with forest education specialists, and then surveyed 115 forest education experts and childcare teachers for importance, performance, overall satisfaction, and space preference. In addition, we accessed overall satisfaction and space preference of twenty-nine preschoolers through interviews, photo-simulation, and questionnaires. As a result, the importance and performance of management program area was rated higher than the spatial characteristics area. In terms of group comparison, the group with active structured program rated two areas higher than the groups with free play. Preschoolers with structured programs preferred facility space, but preschoolers with free play preferred nature. Two preschooler groups rated forest activity as satisfactory. Based on the analysis results: 1) The composition of the forest activity space should ensure accessibility, safety, diversity of diversity, water space, connect to the forest road, and secure various terrains, trees, and natural materials; 2) The management program should ensure that forest activity programs have the proportional balance of structural programs and free play; also. management programs should plan for sufficient free playtime and a high share of play in the forest; and 3) Ensure the role and expertise of forestry specialists and run a program to increase the autonomy of preschoolers.

Synthesis and Characterization of Thermally Cross-linkable Hole Transporting Material Based on Poly(p-phenylenevinylene) Derivative (열경화가 가능한 poly(p-phenylenevinylene)계 정공전달 물질의 합성 및 특성)

  • Choi, Jiyoung;Lee, Bong;Kim, Joo Hyun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.299-303
    • /
    • 2008
  • A thermally cross-linkable polymer, poly[(2,5-dimethoxy-1,4-phenylenevinylene)-alt-(1,4-phenylenevinylene)] (Cross-PPV), was synthesized by the Heck coupling reaction. In order for the polymer to be cross-linkable, 20 mol% excess divinylbenzene was added. The chemical structure of Cross-PPV and thermally crosslinked Cross-PPV were confirmed by FT-IR spectroscopy. From the FT-IR, UV-Vis, and PL spectral data, thermally crosslinked Cross-PPV was insoluble in common organic solvents. The HOMO and LUMO energy level of thermally cross-linked Cross-PPV were estimated -5.11 and -2.56 eV, respectively, which were determined by the cyclic voltammetry and UV-Vis spectroscopy. From the energy level data, one can easily notice that thermally crosslinked Cross-PPV can be used for hole injection layer effectively. Bilayer structured device (ITO/crosslinked Cross-PPV/PM-PPV/Al) was fabricated using poly(1,4-phenylenevinylene-(4-dicyanomethylene-4H-pyran)-2,6-vinylene-1,4-phenylenevinylene-2,5-bis(dodecyloxy)-1,4-phenylenevinylene (PM-PPV) as the emitting layer, which have HOMO and LUMO energy levels of -5.44 eV and -3.48 eV, respectively. The bilayered device had much enhanced the maximum efficiency (0.024 cd/A) and luminescence ($45cd/m^2$) than those of a single layer device (ITO/PM-PPV/Al, 0.003 cd/A, $3cd/m^2$). The enhanced performance originated from that fact that cross-linked Cross-PPV facilitatse the hole injection to the emissive layer and the injected hole and electron from ITO and Al are recombined in emitting layer (PM-PPV) effectively.

Predicting stock movements based on financial news with systematic group identification (시스템적인 군집 확인과 뉴스를 이용한 주가 예측)

  • Seong, NohYoon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.1-17
    • /
    • 2019
  • Because stock price forecasting is an important issue both academically and practically, research in stock price prediction has been actively conducted. The stock price forecasting research is classified into using structured data and using unstructured data. With structured data such as historical stock price and financial statements, past studies usually used technical analysis approach and fundamental analysis. In the big data era, the amount of information has rapidly increased, and the artificial intelligence methodology that can find meaning by quantifying string information, which is an unstructured data that takes up a large amount of information, has developed rapidly. With these developments, many attempts with unstructured data are being made to predict stock prices through online news by applying text mining to stock price forecasts. The stock price prediction methodology adopted in many papers is to forecast stock prices with the news of the target companies to be forecasted. However, according to previous research, not only news of a target company affects its stock price, but news of companies that are related to the company can also affect the stock price. However, finding a highly relevant company is not easy because of the market-wide impact and random signs. Thus, existing studies have found highly relevant companies based primarily on pre-determined international industry classification standards. However, according to recent research, global industry classification standard has different homogeneity within the sectors, and it leads to a limitation that forecasting stock prices by taking them all together without considering only relevant companies can adversely affect predictive performance. To overcome the limitation, we first used random matrix theory with text mining for stock prediction. Wherever the dimension of data is large, the classical limit theorems are no longer suitable, because the statistical efficiency will be reduced. Therefore, a simple correlation analysis in the financial market does not mean the true correlation. To solve the issue, we adopt random matrix theory, which is mainly used in econophysics, to remove market-wide effects and random signals and find a true correlation between companies. With the true correlation, we perform cluster analysis to find relevant companies. Also, based on the clustering analysis, we used multiple kernel learning algorithm, which is an ensemble of support vector machine to incorporate the effects of the target firm and its relevant firms simultaneously. Each kernel was assigned to predict stock prices with features of financial news of the target firm and its relevant firms. The results of this study are as follows. The results of this paper are as follows. (1) Following the existing research flow, we confirmed that it is an effective way to forecast stock prices using news from relevant companies. (2) When looking for a relevant company, looking for it in the wrong way can lower AI prediction performance. (3) The proposed approach with random matrix theory shows better performance than previous studies if cluster analysis is performed based on the true correlation by removing market-wide effects and random signals. The contribution of this study is as follows. First, this study shows that random matrix theory, which is used mainly in economic physics, can be combined with artificial intelligence to produce good methodologies. This suggests that it is important not only to develop AI algorithms but also to adopt physics theory. This extends the existing research that presented the methodology by integrating artificial intelligence with complex system theory through transfer entropy. Second, this study stressed that finding the right companies in the stock market is an important issue. This suggests that it is not only important to study artificial intelligence algorithms, but how to theoretically adjust the input values. Third, we confirmed that firms classified as Global Industrial Classification Standard (GICS) might have low relevance and suggested it is necessary to theoretically define the relevance rather than simply finding it in the GICS.

Multi-Vector Document Embedding Using Semantic Decomposition of Complex Documents (복합 문서의 의미적 분해를 통한 다중 벡터 문서 임베딩 방법론)

  • Park, Jongin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.19-41
    • /
    • 2019
  • According to the rapidly increasing demand for text data analysis, research and investment in text mining are being actively conducted not only in academia but also in various industries. Text mining is generally conducted in two steps. In the first step, the text of the collected document is tokenized and structured to convert the original document into a computer-readable form. In the second step, tasks such as document classification, clustering, and topic modeling are conducted according to the purpose of analysis. Until recently, text mining-related studies have been focused on the application of the second steps, such as document classification, clustering, and topic modeling. However, with the discovery that the text structuring process substantially influences the quality of the analysis results, various embedding methods have actively been studied to improve the quality of analysis results by preserving the meaning of words and documents in the process of representing text data as vectors. Unlike structured data, which can be directly applied to a variety of operations and traditional analysis techniques, Unstructured text should be preceded by a structuring task that transforms the original document into a form that the computer can understand before analysis. It is called "Embedding" that arbitrary objects are mapped to a specific dimension space while maintaining algebraic properties for structuring the text data. Recently, attempts have been made to embed not only words but also sentences, paragraphs, and entire documents in various aspects. Particularly, with the demand for analysis of document embedding increases rapidly, many algorithms have been developed to support it. Among them, doc2Vec which extends word2Vec and embeds each document into one vector is most widely used. However, the traditional document embedding method represented by doc2Vec generates a vector for each document using the whole corpus included in the document. This causes a limit that the document vector is affected by not only core words but also miscellaneous words. Additionally, the traditional document embedding schemes usually map each document into a single corresponding vector. Therefore, it is difficult to represent a complex document with multiple subjects into a single vector accurately using the traditional approach. In this paper, we propose a new multi-vector document embedding method to overcome these limitations of the traditional document embedding methods. This study targets documents that explicitly separate body content and keywords. In the case of a document without keywords, this method can be applied after extract keywords through various analysis methods. However, since this is not the core subject of the proposed method, we introduce the process of applying the proposed method to documents that predefine keywords in the text. The proposed method consists of (1) Parsing, (2) Word Embedding, (3) Keyword Vector Extraction, (4) Keyword Clustering, and (5) Multiple-Vector Generation. The specific process is as follows. all text in a document is tokenized and each token is represented as a vector having N-dimensional real value through word embedding. After that, to overcome the limitations of the traditional document embedding method that is affected by not only the core word but also the miscellaneous words, vectors corresponding to the keywords of each document are extracted and make up sets of keyword vector for each document. Next, clustering is conducted on a set of keywords for each document to identify multiple subjects included in the document. Finally, a Multi-vector is generated from vectors of keywords constituting each cluster. The experiments for 3.147 academic papers revealed that the single vector-based traditional approach cannot properly map complex documents because of interference among subjects in each vector. With the proposed multi-vector based method, we ascertained that complex documents can be vectorized more accurately by eliminating the interference among subjects.

Analysis of Start-up Sustainability Factors Based on ERIS Model: Focusing on the Organization Resilience (ERIS모델 기반 창업지속요인 분석: 조직 리질리언스를 중심으로)

  • Kim, InSook;Yang, Ji Hee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.5
    • /
    • pp.15-29
    • /
    • 2021
  • This study is based on ERIS model for start-up performance, and aims to derive the main reason for start-up sustainability centered on organizational resilience. To this end, systematic literature examination and modified Delphi method were used to investigate start-up sustainability factors based on ERIS Model focused on organizational resilience. The results showed that ERIS model-based entrepreneurial continuity factors were divided into four categories: entrepreneur, resource, industrial environment, strategy, subdivision 8 and detailed factors 54. In addition, the ERIS model-based continuity factors were structured around organizational resilience, and the continuity factors were structured according to ERIS model under five categories: leadership, culture, people, system and environment. The results of this study are as follows. First of all, the results of existing research and analysis show that the concept of successful start-up and sustainability of start-up are used in various fields. Second, it is confirmed that there are common factors of influence on start-up performance and start-up sustainability based on ERIS model. Third, Delphi method's results showed that the general characteristics of entrepreneurs, such as academic background, education level, gender, age, and business experience did not affect the sustainability of entrepreneurship. This study is significant in that it is based on ERIS model focused on organization resilience, and ERIS-R, which integrates Strategy into System and Organization resilience into R in the field of gradually expanding start-up development and support. It is expected that the results of this study will improve the sustainability of start-up that can predict, prevent, and overcome various crises at any time.

Analysis of Rice Blast Outbreaks in Korea through Text Mining (텍스트 마이닝을 통한 우리나라의 벼 도열병 발생 개황 분석)

  • Song, Sungmin;Chung, Hyunjung;Kim, Kwang-Hyung;Kim, Ki-Tae
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.113-121
    • /
    • 2022
  • Rice blast is a major plant disease that occurs worldwide and significantly reduces rice yields. Rice blast disease occurs periodically in Korea, causing significant socio-economic damage due to the unique status of rice as a major staple crop. A disease outbreak prediction system is required for preventing rice blast disease. Epidemiological investigations of disease outbreaks can aid in decision-making for plant disease management. Currently, plant disease prediction and epidemiological investigations are mainly based on quantitatively measurable, structured data such as crop growth and damage, weather, and other environmental factors. On the other hand, text data related to the occurrence of plant diseases are accumulated along with the structured data. However, epidemiological investigations using these unstructured data have not been conducted. The useful information extracted using unstructured data can be used for more effective plant disease management. This study analyzed news articles related to the rice blast disease through text mining to investigate the years and provinces where rice blast disease occurred most in Korea. Moreover, the average temperature, total precipitation, sunshine hours, and supplied rice varieties in the regions were also analyzed. Through these data, it was estimated that the primary causes of the nationwide outbreak in 2020 and the major outbreak in Jeonbuk region in 2021 were meteorological factors. These results obtained through text mining can be combined with deep learning technology to be used as a tool to investigate the epidemiology of rice blast disease in the future.

Development of Consumer Education Teaching-Learning Process for SMART Learning-Based Middle School Home Economics Education (스마트러닝 기반 중학교 가정교과 소비생활 교수-학습안 개발)

  • Seo, Yu Ri;Chae, Jung Hyun
    • Journal of Korean Home Economics Education Association
    • /
    • v.32 no.4
    • /
    • pp.149-170
    • /
    • 2020
  • The purpose of this study was to develop and evaluate a Smart learning-based middle school home economics education plan to improve the online home economics education classes. The educational plan in this study was completed through the process of analysis, design, development, and evaluation. The results of this study are as follows. First, as a result of analyzing consumer life units in the middle school textbooks based on 2015-revised curriculum, Smart learning activities were presented in only two out of the 12 textbooks analyxed. Second, a Smart learning-based middle school home economics education plan was developed in this study with the following characteristics: the topics and contents are structured so that to help learners actively engage in the teaching and learning activities; the education plan to reflects various media and current issues that learners may be interested in; the lesson plans were structured with the premise of online classes; softwares that enable real-time discussion and collaboration are used; and the evaluation method are composed of online activities. Third, the expert evaluation scores for the educational plan and activity materials developed were 4.52 (5-point Likert scale), when averaged across subject, goal, content, teaching/learning activity, and evaluation, and the overall content validity index(CVI) was 0.95. The adequacy of execution, benefit, attractiveness, usefulness, and feasibility were highly with an average of 4.62. Based on the experts' comments, the education plan and activity materials were revised and completed. This study is meaningful in that it developed teaching and learning activities based on online classes after the COVID-19 outbreak, overcoming the limitations of offline classes. It has implications for face-to-face home economics classes due to COVID-19, as it suggests ways to blend online and offline teaching/learning activities depending on the situation.

Structuralization of Elective Courses in High School Home Economics(Subject Group) in Preparation for the Next Curriculum (차기 교육과정을 대비한 고등학교 가정교과(군) 선택과목의 구조화)

  • Yu, Nan Sook;Baek, Min Kyung;Ju, Sueun;Han, Ju;Park, Mi Jeong
    • Journal of Korean Home Economics Education Association
    • /
    • v.33 no.1
    • /
    • pp.129-149
    • /
    • 2021
  • The purposes of this study were to examine the current status of the establishment of home economics-related departments in colleges and universities and the changes required in the home economics curriculum of secondary schools, and to structure the elective courses of home economics subject(group) that can be organized in the next high school curriculum. To achieve these purposes, related literature and data were analyzed, and a questionnaire survey and FGI were conducted by home economics experts. The research results are as follows. First, home economics was considered to be highly related not only to the human ecology but also to social sciences, education, engineering, and arts and physical education. The numbers of technical colleges and 4-year universities with departments related to home economics were 1,405 and 961 respectively in 2019. Therefore, it was confirmed that there is a sufficient basis for opening home economics subject(group) elective courses in high school. Second, in the secondary school home economics curriculum, the concepts of culture, relations, independence, and sustainability were emphasized based on the changing life patterns and values. It was proposed that the contents of the home economics course would be structured in a way that allows deep and high-level thinking and helps students to enjoy culture. This demand can be implemented by diversifying, specializing, and structuring the elective courses of the home economics subject(group). Third, a total of 18 elective subjects and subject outlines were structured in the fields of child/family, food/nutrition, clothing, housing, consumption/family management, and home economics integration. This study results will contribute to the establishment of the high school credit system by providing basic information for organizing the next home economics curriculum, and expanding the options for home economics subject(group) to high school students.

Effects of Out-of-school STEAM Programs Based on Social-Emotional Learning (사회정서학습 기반의 학교 밖 STEAM 프로그램의 효과)

  • Lee, Hyunjoo;Lee, Soo-Yong;Jung, Jaeeun;Lee, Saebyoul;Choi, Eunhye;Kwak, E-Rang;Kim, Younghwa;Chang, Hyewon
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.740-753
    • /
    • 2022
  • This study was conducted to develop and apply an out-of-school STEAM program model based on Social-Emotional Learning (SEL) for underprivileged students in the lower grades. To this end, a STEAM program based on SEL was developed, with the following characteristics. First, by integrating traditional STEAM learning elements and SEL elements, a structured program was designed with consistent stages, including mindfulness meditation→present an authentic situation→creative design→emotional experiences→reflection. Second, the program was structured so that elementary school students could develop mathematical thinking and scientific inquiry skills in problem-solving situations in daily life. Third, the detailed themes for each STEAM program involved storytelling-based problem situations, as well as activities centered on play and sympathy to reflect the educational needs of underprivileged students. From these characteristics, a total of five programs were developed and applied to 16 teachers and 354 lower-grade elementary school students in 16 community children centers nationwide. The results were as follows. First, while students' satisfaction with the STEAM program was 4.16, there were no significant differences in STEAM satisfaction according to gender. Second, while all students' interest and self-efficacy, which was one of sub factors of STEAM attitude, were significantly improved, no significant difference was seen in STEAM attitudes according to gender. Third, although students' SEL competencies were not significantly improved, relationship skills, which were among the sub factors of SEL competencies, were significantly improved, and there were no significant differences in SEL competencies according to gender. From these results, a discussion on the effect of the out-of-school STEAM program for underprivileged students and directions for follow-up studies was suggested.

About the Multi-layered Communication of Princess Pari on the Webtoon Platform of Daum -Focusing on Analysis of Narrative Structure and Comments (Daum 웹툰 <바리공주>를 통해 본 고전 기반 웹툰 콘텐츠의 다층적 대화 양상 -서사구조와 댓글 분석을 중심으로)

  • Choe, Key-Sook
    • Journal of Popular Narrative
    • /
    • v.25 no.3
    • /
    • pp.303-345
    • /
    • 2019
  • This article analyzes the multi-layered communication in the Webtoon Princess Pari, released on the Daum portal site, created (written and illustrated) by Kim Naim, through analyzing the narrative structure and comments with the qualitative / quantitative methodology. The webtoon Princess Pari is structured in an omnibus style in which unit narratives are intermittently articulated, multi-lined, and interconnected. As integrated narratives which link with unitary narratives, Pari's growth story as a shaman and a romance narrative are structured. The classical original story of the shaman was used as a prehistory corresponding to the prequel of the webtoon through a preview, and the writer restructured the narrative to overcome the contradictions of the gender asymmetry and the patriarchal ideology of the original text. The viewer then creates a conversational space by giving critical and reflective comments. According to a statistical analysis conducted through sampling, the types of comments can be classified as follows: Appreciation and criticism of the contents ≫ Emotional response ≫ Intuitive overall review ≫ Knowledge and reflection ≫ Comments on comments. In the process of creation and acceptance of the Webtoon, a multi-layered dialogue between classical and modern, content and audience, acceptance and creation has been at play. In the creation dimension, the writer used a device to fill the gap of mythical symbols of the contents. At the level of the audience, they formed a culture of sharing information, knowledge, and reflection about tradition/folk/culture through comments. This corresponds to classical and modern dialogue through the webtoon. The viewers form a sympathetic bond, attempt hermeneutical coordination, supplement the information, and search for a balanced angle through controversial conversation. In addition, by commenting on attitudes, views, and perspective, the commentators showed a behavioral pattern corresponding to meta-criticism in literature. The viewers' comments acted as feedback on the creation of the webtoons, so that the creation and acceptance itself influenced the production of the content of the webtoon. The webtoon Princess Pari, which was based on Korean classical narrative, has been reorganized onto 'moving and dynamic' content, which leads to sense, thinking, criticism and reflection through the formation of various dialogues.