• Title/Summary/Keyword: structure sensitivity study

Search Result 678, Processing Time 0.026 seconds

Performance Evaluation of Imote2-Platformed Wireless Smart Sensor Node for Health Monitoring of Harbor Structures (항만구조물 건전성 모니터링을 위한 Imote2 플랫폼 기반 스마트 무선센서노드의 성능 평가)

  • Park, Jae-Hyung;Kim, Jeong-Tae;Lee, So-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.26-33
    • /
    • 2011
  • In this study, a high-sensitive smart wireless sensor based on an Imote2 sensor platform is developed for structural health monitoring of harbor structures. To achieve the objective, the following approaches are implemented. Firstly, the smart wireless sensor based on the high-performance Imote2 sensor platform is designed to measure acceleration with high sensitivity from structures. Secondly, embedded software is designed for autonomous structural health monitoring. Finally, the performance of the smart wireless sensor is estimated from experimental tests on a lab-scaled caisson structure.

A Study on the Dip-pen Nanolithography Process and Fabrication of Optical Waveguide for the Application of Biosensor

  • Kim, Jun-Hyong;Yang, Hoe-Young;Yu, Chong-Hee;Lee, Hyun-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.163-168
    • /
    • 2008
  • Photonic crystal structures have been received considerable attention due to their high optical sensitivity. One of the techniques to construct their structure is the dip-pen lithography (DPN) process, which requires a nano-scale resolution and high reliability. In this paper, we propose a two dimensional photonic crystal array to improve the sensitivity of optical biosensor and DPN process to realize it. As a result of DPN patterning test, we have observed that the diffusion coefficient of the mercaptohexadecanoic acid (MHA) molecule ink in octanol is much larger than that in acetonitrile. In addition, we have designed and fabricated optical waveguides based on the mach-zehnder interferometer (MZI) for application to biosensors. The waveguides were optimized at a wavelength of 1550 nm and fabricated according to the design rule of 0.45 delta%, which is the difference of refractive index between the core and clad. The MZI optical waveguides were measured of the optical characteristics for the application of biosensor.

Design of optimal fiber angles in the laminated composite fan blades (적층 복합재 팬-블레이드의 적층각도 최적화 설계)

  • Jeong, Jae-Yeon;Jo, Yeong-Su;Ha, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1765-1772
    • /
    • 1997
  • The layered composites have a character to change of structure stiffness with respect to the layup angles. The deformations in the fan-blades to be initially designed by considering efficiency and noise, etc., which arise due to the pressure during the fan operation, can make the fan inefficient. Thus, so as to minimize the deformations of the blades, it is needed to increase the stiffness of the blades. An investigation has been performed to develop the three dimensional layered composite shell element with the drilling degree of freedom and the optimization module for finding optimal layup angles with sensitivity analysis. And then they have been verified. In this study, the analysis model is engine cooling fan of automobile. In order to analyzes the stiffness of the composite fan blades, finite element analysis is performed. In addition, it is linked with optimal design process, and then the optimal angles that can maximize the stiffness of the blades are found. In the optimal design process, the deformations of the blades are considered as multiobjective functions, and this results minimum bending and twisting simultaneously.

Study on Dual-Lenses Actuator for HD-DVD System (차세대 DVD 시스템용 Actuator 연구)

  • Kim, Seok-Jung;Lee, Yong-Hoon;Ahn, Young-Man;Chung, Chong-Sam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.777-781
    • /
    • 2002
  • Recently, an optical disc system has been proposed using blue laser diode, high NA objective lens and groove only disc structure. A new method is needed to readout CD and DVD in this blue system. In order to readout CD and DVD in HD-DVD system, we adopted dual-lenses actuator in consideration of optical utilization efficiency, optical performance and insurance of sufficient W.D (working distance). This dual-lenses actuator has two objectives in radial direction, one is for CD/DVD and the other is for HD-DVD. We had to solve the induced problems of DC tilt increase, $2^{nd}$ resonance deterioration and AC sensitivity drop caused by disposing two lenses in an actuator. Especially, to solve AC sensitivity drop, we introduced two 2-pole magnets and separated focus and track magnetic circuits. Consequently we presented that dual-lenses actuator has been possessed good performance. And we measured eye patterns of CD, DVD and HD-DVD by using HD-DVD optical pick-up with dual-lenses actuator.

  • PDF

PLASTICITY-BASED WELDING DISTORTION ANALYSIS OF THIN PLATE CONNECTIONS

  • Jung, Gonghyun;Tsai, Chon L.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.694-699
    • /
    • 2002
  • In autobody assembly, thin-wall, tubular connections have been used for the frame structure. Recent interest in light materials, such as aluminum or magnesium alloys, has been rapidly growing for weight reduction and fuel efficiency. Due to higher thermal expansion coefficient, low stiffness/strength, and low softening temperature of aluminum and magnesium alloys, control of welding-induced distortion in these connections becomes a critical issue. In this study, the material sensitivity to welding distortion was investigated using a T-tubular connection of three types materials; low carbon steel (A500 Gr. A), aluminum alloy (5456-H116) and magnesium alloy (AZ91C-T6). An uncoupled thermal and mechanical finite element analysis scheme using the ABAQUS software program was developed to model and simulate the welding process, welding procedure and material behaviors. The predicted angular distortions were correlated to the cumulative plastic strains. A unique relationship between distortion and plastic strains exists for all three materials studied. The amount of distortion is proportional to the magnitude and distribution of the cumulative plastic strains in the weldment. The magnesium alloy has the highest distortion sensitivity, followed by the other two materials with the steel connection having the least distortion. Results from studies of thin-aluminum plates show that welding distortion can be minimized by reducing the cumulative plastic strains by preventing heat diffusion into the base metal using a strong heat sink placed directly beneath the weld. A rapid cooling method is recommended to reduce welding distortion of magnesium tubular connections.

  • PDF

FBG Sensor Probes with Silver Epoxy for Tracing the Maximum Strain of Structures

  • Im, Jooeun;Kim, Mihyun;Choi, Ki-Sun;Hwang, Tae-Kyung;Kwon, Il-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.459-464
    • /
    • 2013
  • Structures can be evaluated their health status by allowable loading criteria. These criteria can be determined by the maximum strain. Therefore, in order to detect this maximum strain of structures, fiber optic Bragg grating(FBG) sensor probes are newly designed and fabricated to perform the memorizing detection even if the sensor system is on-and-off. The probe is constructed with an FBG optical fiber embedded in silver epoxy. When the load is applied and removed on the structure, the residual strain remains in the silver epoxy to memorize the maximum strain effect. In this study, a commercial Al-foil bonded FBG sensor probe was tested to investigate the detection feasibility at first. FBG sensor probes with silver epoxy were fabricated as three different sizes. The detection feasibility of maximum strain was studied by doing the tensile tests of CFRP specimens bonded with these FBG sensor probes. It was investigated the sensitivity coefficient defined as the maximum strain divided by the residual strain. The highest sensitivity was 0.078 of the thin probe having the thickness of 2 mm.

A Study on Dip-Pen Nanolithography Process to fabricate Two-dimensional Photonic Crystal for Planar-type Optical Biosensor (평판형 광-바이오센서용 2차원 광자결정 제작을 위한 Dip-Pen Nanolithography 공정 연구)

  • Kim Jun-Hyong;Lee Jong-Il;Lee Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.267-272
    • /
    • 2006
  • Optical waveguide based on symmetric and asymmetric Mach-Zehnder interferometer(MZI) type was designed, fabricated and measured the optical characteristics for the application of biosensor. The wavelength of the input optical signal for the device was 1550 nm. And the difference of refractive index was $0.45\;{\Delta}\%$ between core and cladding of the device. The TM(Transverse Magnetic) mode optical properties of the biosensor were analyzed with the refractive index variation of gold thin film deposited for overclad. Nowadays, nano-photonic crystal structures have been paied much attention for its high optical sensitivity. There is a technique to realize the structure, which is called Dip-Pen Nanolithography(DPN) process. The process requires a nano-scale process patterning resolution and high reliability. In this paper, two dimensional nano-photonic crystal array on the surface was proposed for improving the sensitivity of optical biosensor. And the Dip-Pen Nanolithogrphy process was investigated to realize it.

Analytic Study of 362 Bile Cytologic Materials (담즙 세포학 표본 362건의 검색)

  • Koh, Jae-Soo;Ha, Chang-Won;Myong, Na-Hye;Cho, Kyung-Ja;Jang, Ja-June
    • The Korean Journal of Cytopathology
    • /
    • v.2 no.2
    • /
    • pp.73-78
    • /
    • 1991
  • A total of 362 bile samples from 104 patients with evidence of biliary tract obstruction were submitted for diagnostic cytology from January, 1989 to April, 1991. The patients were classified based on the obstructive cause, and the cytologic results were reviewed. 298 of the specimens were from patients with intrabiliary malignant structure, and 17 were from patients with extrabiliary malignant compression or benign biliary obstruction. Bile cytology was positive for carcinoma in 42 samples from patients with intrabiliary malignant stricture, and the diagnostic sensitivity was 14%. There were no false positive cases. We concluded that the cause of low sensitivity was degenerative change of cell due to prolonged sampling time. What is noteworthy was the high prevalence of Clonorchis sinensis eggs, being detected in 25 patients with intrabiliary malignancy, supporting the association between clonorchiasis and biliary tree malignancy.

  • PDF

A Study on the pH-, pNa- and pK-Sensing Properties of K and Al Coimplanted SiO$_2$ Thin Films (K 및 Al 이중이온주입된 SiO$_2$ 박막의 pH, pNa 및 pK 농도 감지특성에 관한 연구)

  • 김병수;신백균;이붕주;이덕출
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.293-297
    • /
    • 2003
  • Silicon dioxide (SiO$_2$) layers were fabricated on Si$_3$N$_4$/SiO$_2$/Si layer structures by low pressure chemical vapor deposition (LPCVD). Potassium and aluminum were then coimplanted by implanting potassium ions with the energy of 100 [keY] and dose of 5x10$^{16}$ [cm ̄$^2$] and 1x10$^{17}$ [cm ̄$^2$] into an aluminum buffer layer on the SiO$_2$Si$_3$N4/SiO$_2$/Si structure. The pH, pNa, and pK ion sensitivities of the resulting layers were investigated and compared to those of as-deposited silicon dioxide layer. The pK-sensitivity of the silicon dioxide was enhanced by the K and Al coimplantation. On the contrary, the pH and pNa-sensitivities of the coimplanted silicon dioxides were quite lower than that of the as-deposited silicon dioxide.

A Study on Micro Gas Sensor Utilizing $WO_3$Thin Film Fabricated by Sputtering Method (스파터링법에 의해 제작된 $WO_3$박막을 이용한 마이크로 가스센서에 관한 연구)

  • 이영환;최석민;노일호;이주헌;이재홍;김창교;박효덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.471-474
    • /
    • 2000
  • A flat type microgas sensor was fabricated on the p-type silicon wafer with low stress S $i_3$ $N_4$, whose thickness is 2${\mu}{\textrm}{m}$ using MEMS technology and its characteristics were investigated. W $O_3$thin film as a sensing material for detection of N $O_2$gas was deposited using a tungsten target by sputtering method, followed by thermal oxidation at several temperatures (40$0^{\circ}C$~$600^{\circ}C$) for one hour. N $O_2$gas sensitivities were investigated for the W $O_3$thin films with different annealing temperatures. The highest sensitivity when operating at 20$0^{\circ}C$ was obtained for the samples annealed at $600^{\circ}C$. As the results of XRD analysis, the annealed samples had polycrystalline phase mixed with triclinic and orthorhombic structures. The sample exhibit higher sensitivity when the system has less triclinic structure. The sensitivities, $R_{gas}$ $R_{air}$ operating at 20$0^{\circ}C$ to 5 ppm N $O_2$of the sample annealed at $600^{\circ}C$ were approximately 90. 90.

  • PDF