• Title/Summary/Keyword: structure sensitivity study

Search Result 678, Processing Time 0.027 seconds

Nonlinear Analysis of Hybrid-Typed Cable Structures by Stress Control (장력제어 기법을 이용한 Hybrid형 케이블 구조물의 비선형 시공해석)

  • Jeong, Eul-Seok;Kim, Seung-Deog
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.123-130
    • /
    • 2004
  • The recent large-spatial structures are frequently made from light-weight structural system and it has a good mechanical efficiency and uses new materials. The large space is made by light-weight structural system using tension members mainly, and generally it is called a soft structure. The cable dome structures which are a soft structures are very flexible, the stresses and nodal coordinates of other members are changed when we control the stress of one member. Therefore, we have to do two kind of works for effective and accurate construction of the cable dome structures. The first work is making a working scenario to complete the final objective form and the second is revising constructional errors occurred in process of the actual works. These works are called constructional analysis. At this time, we have to consider geometric nonlinearity to reflect the sensitivity by the initial stresses of cable dome structures, and constructional analysis comes down to a nonlinear problem after all. In this study, we try to approach the constructional analysis of the cable dome structures using the numerical method, and then verify it.

  • PDF

Tension Force Identification of Cable Structures using Various Analytical Methods (다양한 해석적 방법에 의한 케이블 구조의 장력 추정)

  • Noh, Myung-Hyun;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.38-46
    • /
    • 2012
  • The method based on various mathematical characteristic equations for identifying tensile forces in the cable structure system are used as response data to reflect the properties of the dynamic sensitivity. The vibration tests have been conducted with respect to levels of applied weight for the sagged cable. In this study, a set of natural frequencies are extracted from the measured dynamic data. Next, existing characteristic equation methods based these extracted natural frequencies are applied to identify tensil forces of the sagged cable system. Through several verification procedures, the proposed methods could be applied to a sagged cable system when the initial material data are insufficiency.

A Study for Structural Damage Identification Method Using Genetic Algorithm (유전자 알고리즘을 이용한 구조물 손상 탐색기법에 관한 연구)

  • Woo, Ho-Kil;Choi, Byoung-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.80-87
    • /
    • 2007
  • In this paper, a method for identifying the location and extent of a damage in a structure using residual forces was presented. Element stiffness matrix reduction parameters in a finite element model were used to describe the damaged structure mathematically. The element stiffness matrix reduction parameters were determined by minimizing a global error derived from dynamic residual vectors, which were obtained by introducing a simulated experimental data into the eigenvalue problem. Genetic algorithm was used to get the solution set of element stiffness reduction parameters. The proposed scheme was verified using Euler-Bernoulli beam. The results were presented in the form of tables and charts.

A parametric study of indicial function models in bridge deck aeroelasticity

  • Borri, C.;Costa, C.
    • Wind and Structures
    • /
    • v.7 no.6
    • /
    • pp.405-420
    • /
    • 2004
  • In common approaches, bridge dynamics under wind action is analyzed by modeling the interaction between fluid and structure by means of transient wind loads acting over the structure itself. Amid various possible manners to describe such types of loads, a representation based on families of 'indicial functions' is adopted here. The aim is to investigate its flexibility to capture the main features of wind-bridge interaction. A set of coefficients is involved in indicial functions. The values that one may attribute to them suffer uncertainties coming from experimental errors affecting data. Here, the sensitivity of a 2-DOF schematic model to the variations of these coefficients is investigated at fixed values of dynamic derivatives and for various types of indicial functions. It is shown how parameter variations influence phase portraits.

First-Principles Study of the Three Polymorphs of Crystalline 1,1-Diamino-2,2-dinitrotheylene

  • Wu, Qiong;Zhu, Weihua;Xiao, Heming
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2281-2285
    • /
    • 2013
  • The electronic structure, optical spectra, and thermodynamic properties of the three FOX-7 polymorphs (${\alpha}$, ${\beta}$, and ${\gamma}$) have been studied systematically using density functional theory. The LDA (CA-PZ) and generalized gradient approximation (GGA) (PW91) functions were used to relax the three FOX-7 phases without any constraint. Their density of states and partial density of states were calculated and analyzed. The band gaps for the three phases were calculated and the sequence of their sensitivity was presented. Their absorption coefficients were computed and compared. The thermodynamic functions including enthalpy (H), entropy (S), free energy (G), and heat capacity ($C_p$) for the three phases were evaluated.

Damage prediction of RC containment shell under impact and blast loading

  • Pandey, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.729-744
    • /
    • 2010
  • There is world wide concern for safety of nuclear power installations after the terrorist attack on World Trade Center in 2001 and several other civilian structures in the last decade. The nuclear containment structure in many countries is a double shell structure (outer shell a RCC and inner a prestressed concrete). The outer reinforced concrete shell protects the inner shell and is designed for external loading like impact and blast. A comparative study of non-linear response of reinforced concrete nuclear containment cylindrical shell subjected to impact of an aircraft (Phantom) and explosion of different amounts of blast charges have been presented here. A material model which takes into account the strain rate sensitivity in dynamic loading situations, plastic and visco-plastic behavior in three dimensional stress state and cracking in tension has been developed earlier and implemented into a finite element code which has been validated with published literature. The analysis has been made using the developed software. Significant conclusions have been drawn for dissimilarity in response (deflections, stresses, cracks etc.) of the shell for impact and blast loading.

Fabrication and Characterization of Hexagonal Tungsten Oxide Nanopowders for High Performance Gas Sensing Application (육방정계 텅스텐옥사이드 나노분말의 합성과 고성능 가스센서응용을 위한 성능 평가)

  • Park, Jinsoo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.28-33
    • /
    • 2019
  • The gas sensor is essential to monitoring dangerous gases in our environment. Metal oxide (MO) gas sensors are primarily utilized for flammable, toxic and organic gases and $O_3$ because of their high sensitivity, high response and high stability. Tungsten oxides ($WO_3$) have versatile applications, particularly for gas sensor applications because of the wide bandgap and stability of $WO_3$. Nanosize $WO_3$ are synthesized using the hydrothermal method. As-prepared $WO_3$ nanopowders are in the form of nanorods and nanorulers. The crystal structure is hexagonal tungsten bronze ($MxWO_3$, x =< 0.33), characterized as a tunnel structure that accommodates alkali ions and the phase stabilizer. A gas detection test reveals that $WO_3$ can detect acetone, butanol, ethanol, and gasoline. This is the first study to report this capability of $WO_3$.

Research on Capacitive Tactile Sensor for Electronic Skin using Natural Rubber and Nitrile Butadiene Rubber

  • Sangmin Ko;Dasom Park;Sangkyun Kim
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.173-178
    • /
    • 2023
  • Recently, there has been a significant focus on the development of flexible and stretchable sensors, driven by advancements in electronic devices and the robotics industry. Among these sensors, tactile sensors stand out as the most actively researched, playing a crucial role in facilitating interaction between humans and electronic devices, particularly in robotics and medical applications. This study specifically involves the manufacturing of a capacitive tactile sensor using a relatively straightforward process and sensor structure. Natural rubber and Nitrile butadiene rubber, commonly employed in the rubber industry, were utilized. The dielectric material in the manufactured tactile sensor possesses a porous structure. Notably, the resulting tactile sensor demonstrated excellent sensitivity, approximately 1%/kPa, and exhibited the capability to detect pressures up to 212 kPa.

The Clinical Examination of Netspeg Lens for Good Visual Acuity (시력 개선을 위한 Netspeg 렌즈의 임상적 검증)

  • Kim, Douk-Hoon;Bae, Han-Young;Kim, Sun-Tae
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.3
    • /
    • pp.281-291
    • /
    • 2006
  • The aim of this study was performed the clinical test using Netspeg lens for good visual acuity on subjects with abnormal refraction status. The subjects of one hundreds adults (fifty males, fifty females, mean=21 years, range=19 to 24) were recorded. The subjects were researched the history including the systemic health, medication, genetics, allergy, systemic disease and ocular disease. The refraction test was recorded the monocular and binocular using objective method. Visual acuity was performed the binocular status using the Netspeg lens and CR-39. Stereopsis test was performed the titmus fly and TNO at near distance using Netspeg lens and CR-39. The P-VEP test was used the 16 pattern size(Bausch Lomb, production in USA) with three channels. Also Subjects viewed the p-vep stimulus with binocular vision through the corrected visual acuity using the Netspeg lens and CR-39. The contrast sensitivity test was performed the contrast sensitivity chart(pelli-Robertson, USA) at 1m distance using the Netspeg lens and CR-39. The ultrastructure of surface on the Netspeg lens and CR-39 was observed the SEM(JMS-5800, made in Japan). The results of this study was as follows: 1. In corrected visual acuity of abnormal refraction using the Netspeg lens and CR-39, the Netspeg lens wearer were acquired the good visual field and clear visual acuity comparative to CR-39 wearer in the subject vision test. however the comfort of visual acuity was similar results in the Netspeg lens and CR-39. Also the subjects of Netspeg lens wearer was good visual acuity more than CR-39 wearer and in the analysis of P-VEP, the amplitude of wave on Netspeg lens used appears to be better through the CR-39(p>0.5). Besides, on the contrast sensitivity, the Netspeg lens wearer was good results than CR-39. The value on stereopsis with TNO by Netspeg lens wearer was better than CR-39 in results. However, in the stereopsis test with Titmus, the Netspeg lens and CR-39 wearer was similar results. 2. The ultrastructure of Netspeg lens surface was the smooth and fine shape more than CR-39. Also, Netspeg lens have a fine line structure in ultrastructure. In conclusion, the results of this study conformed that the surface ultrastructure of Netspeg lens used is more specific pin hole design structure than CR-39. This study indicated that the vision of Netspeg lens used have a better than CR-39 in the corrected visual acuity for abnormal refraction eye. Therefore, In this paper, we suggested that the ultrastructure and line structure of Netspeg lens was related to good visual function. However the visual function of the aspheric Netspeg and ultra waterproof Netspeg lens was similar results.

  • PDF

A Study on Impact Monitoring Using a Piezoelectric Paint Sensor (압전 페인트 센서를 활용한 충격 모니터링 활용 방안)

  • Choi, Kyungwho;Kang, Donghoon;Park, Seung-Bok;Kang, Lae-Hyong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.349-357
    • /
    • 2015
  • The piezoelectric paint sensor is a paint type sensor comprising of an epoxy and piezoelectric powder, which is the main component of a piezoelectric material. This sensor can be easily attached to any type of structure as compared to other sensors because it is viable to directly apply it on structures, as in the case with a typical paint. In this study, the capability of piezoelectric paint sensor for impact detection was evaluated. In Particular, the applications of the piezoelectric paint sensor for railroad vehicles were considered. There have been various cases reported about the damages caused by flying gravel to the under-cover of the railroad vehicle during operation. In order to prevent this, real-time monitoring of the large under-cover surface of the railroad vehicle is unavoidable. Under the assumption of vehicle application, sensor sensitivities were measured after multiple and prolonged exposure to thermal cycle environment $-20{\sim}60^{\circ}C$). Sensitivity evaluation of paint sensor under environmental conditions was conducted in an aluminum specimen. In results, despite the small variations in sensitivity, we could confirm the applicability of this paint sensor for impact detection even after a severe environmental exposure test.