• Title/Summary/Keyword: structure of organs

Search Result 210, Processing Time 0.033 seconds

Histopathological observation on the uterus and ovary of rats and mice treated with Ivermectin (Ivermectin을 투여한 rat와 mouse의 자궁 및 난소에 대한 병리조직학적 관찰)

  • Cho, Yoo-joung;Lee, Cha-soo
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.2
    • /
    • pp.429-440
    • /
    • 1996
  • In order to know morphological changes on the female genital organs by Ivermectin(IVM) administration, the histopathological observation was carried out in the organs of rat and mouse treated with the overdose of IVM. In the microscopical findings of the uterus, there were many mitotic figures, epithelial hyperplasia and papillary foldings in the endometrial surface. The increased prevalance of uterine glands, uterine epithelia and glands hyperplasia were markedly presented on diverse patterns adenoma-like structure and single nodular or multiple polyp-like adenoma. In ovary, primary and mature follicles were decreased in number, and hypoplasia of ovarian follicles, atretic follicles, follicular cysts and ovarian atropy were observed. It was considered that IVM administration resulted in follicular hypoplasia and atropy of ovary, and hyperplasia of uterine gland and endometrial surface epithelium might be transformed to neoplasia of glandular structures.

  • PDF

Brain consequences of acute kidney injury: Focusing on the hippocampus

  • Malek, Maryam
    • Kidney Research and Clinical Practice
    • /
    • v.37 no.4
    • /
    • pp.315-322
    • /
    • 2018
  • The high mortality rates associated with acute kidney injury are mainly due to extra-renal complications that occur following distant-organ involvement. Damage to these organs, which is commonly referred to as multiple organ dysfunction syndrome, has more severe and persistent effects. The brain and its sub-structures, such as the hippocampus, are vulnerable organs that can be adversely affected. Acute kidney injury may be associated with numerous brain and hippocampal complications, as it may alter the permeability of the blood-brain barrier. Although the pathogenesis of acute uremic encephalopathy is poorly understood, some of the underlying mechanisms that may contribute to hippocampal involvement include the release of multiple inflammatory mediators that coincide with hippocampus inflammation and cytotoxicity, neurotransmitter derangement, transcriptional dysregulation, and changes in the expression of apoptotic genes. Impairment of brain function, especially of a structure that has vital activity in learning and memory and is very sensitive to renal ischemic injury, can ultimately lead to cognitive and functional complications in patients with acute kidney injury. The objective of this review was to assess these complications in the brain following acute kidney injury, with a focus on the hippocampus as a critical region for learning and memory.

Antennal Sensory Organs in the Female Millipede Orthomorphella pekuensis (Polydesmida: Paradoxosomatidae)

  • Chung, Kyung-Hwun;Moon, Myung-Jin
    • Animal cells and systems
    • /
    • v.10 no.4
    • /
    • pp.183-189
    • /
    • 2006
  • The fine structural characteristics of the antennal sensory organs of a female millipede, Orthomorphella pekuensis, were observed with field emission scanning electron microscopy. On the surface of the antenna, four basic types of sensory receptor with the function of either mechanical or olfactory reception are identified in this female millipede. Of these, chaetiform sensilla (CS) and trichoid sensilla (TS) are related to mechanical reception, and four large apical cone sensilla (AS) and three subtypes of basiconic sensilla ($BS_1,\;BS_2,\;BS_3$) are likely to function in olfactory reception, as these receptors have porous structure commonly. Although this millipede also possess a number of primary or secondary sexual characters to improve the efficiency of reproduction, we could not observe their prominent sexually dimorphic characters in the antennal sensilla with the exception of minor structural and numerical differences.

Development and application of TPACK based STEAM program - Focused on the excretory organs in the 'structure and function of our body' unit - (TPACK 기반 융합프로그램 개발 및 적용 - '우리 몸의 구조와 기능' 단원 중 배설 기관을 중심으로 -)

  • Ko, Dong Guk;Hong, Seung-Ho
    • Journal of Korean Elementary Science Education
    • /
    • v.40 no.4
    • /
    • pp.443-459
    • /
    • 2021
  • In this study, a TPACK-based STEAM program was developed and applied under the theme of excretory organs in the 'Structure and Function of Our Body' of the elementary science curriculum. The program was produced and conducted through curriculum analysis and learning goal detailing, learning environment analysis, teaching·learning method and technology selection, TPACK elements arrangement and teaching·learning material development, application and effectiveness verification. Teacher's TPACK considered in STEAM program design process is content knowledge (appearance and work of excretory organs), pedagogical knowledge (STEAM, problem-based learning, research learning, discussion learning, cooperative learning, scientific writing) and technology knowledge (3D printer and smart device application technology). The program consisted of a total of 8 hours of project learning activities and was applied to 29 students in the fifth grade as an experimental group. A program of the same theme developed mainly from textbooks was applied to 27 students in the fifth grade of a comparison group. As a result of the application of the program, the experimental group showed significant improvement in creative problem-solving ability and scientific attitude compared to the comparison group, and the class satisfaction with the STEAM program was also high. However, there was no significant difference in academic achievement ability.

Size, Shape, and Crystal Structure-dependent Toxicity of Major Metal Oxide Particles Generated as Byproducts in Semiconductor Fabrication Facility (반도체 가공 작업환경에서 부산물로 발생되는 주요 금속산화물의 입자 크기, 형상, 결정구조에 따른 독성 고찰)

  • Choi, Kwang-Min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.119-138
    • /
    • 2016
  • Objectives: The purpose of this study is to review size, shape, and crystal structure-dependent toxicity of major metal oxide particles such as silicon dioxide, tungsten trioxide, aluminum oxide, and titanium dioxide as byproducts generated in semiconductor fabrication facility. Methods: To review the toxicity of major metal oxide particles, we used various reported research and review papers. The papers were searched by using websites such as Google Scholar and PubMed. Keyword search terms included '$SiO_2$(or $WO_3$ or $Al_2O_3$ or $TiO_2$) toxicity', 'health effects $SiO_2$(or $WO_3$ or $Al_2O_3$ or $TiO_2$). Additional papers were identified in references cited in the searched papers. Results: In various cell lines and organs of human and animals, cytotoxicity, genotoxicity, hepatoxicity, fetotoxicity, neurotoxicity, and histopathological changes were induced by silicon dioxide, tungsten trioxide, aluminium oxide, and titanium dioxide particles. Differences in toxicity were dependent on the cell lines, organs, doses, as well as the chemical composition, size, surface area, shape, and crystal structure of the particles. However, the doses used in the reported papers were higher than the possible exposure level in general work environment. Oxidative stress induced by the metal oxide particles plays a significant role in the expression of toxicity. Conclusions: The results cannot guarantee human toxicity of the metal oxide particles, because there is still a lack of available information about health effects on humans. In addition, toxicological studies under the exposure conditions in the actual work environment are needed.

Dynamic discrmination of sensory evaluation capability using a paired-comparison method (일대비교에 의한 관능평가능력의 동작판별)

  • 김정만;이상도
    • Journal of the Ergonomics Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.85-91
    • /
    • 1993
  • Data obtained for sensory evaluation have a wide dispersion and fuzziness since human sensory organs are used as a means of measuring sensation instead of measuring instruments. Such dispersion and fuzziness are caused by all kinds of time error and have a great influence on the sensory evaluation, but most of previous papers not consider time errors. In this study, the comparative judgement capability of the evaluator was discriminated by means of the eigen- structure analysis on the premise that evaluation values of sensory evaluators obtained by a paired-comparison become different by the order of sample presentation.

  • PDF

Octacalcium phosphate, a promising bone substitute material: a narrative review

  • Jooseong Kim;Sukyoung Kim;Inhwan Song
    • Journal of Yeungnam Medical Science
    • /
    • v.41 no.1
    • /
    • pp.4-12
    • /
    • 2024
  • Biomaterials have been used to supplement and restore function and structure by replacing or restoring parts of damaged tissues and organs. In ancient times, the medical use of biomaterials was limited owing to infection during surgery and poor surgical techniques. However, in modern times, the medical applications of biomaterials are diversifying owing to great developments in material science and medical technology. In this paper, we introduce biomaterials, focusing on calcium phosphate ceramics, including octacalcium phosphate, which has recently attracted attention as a bone graft material.

In vivo Imaging Biodistribution Profile of a New Macrocyclic Gadolinium Chelate as a Highly Stable Multifunctional MRI Contrast Agent

  • Sung, Bo Kyung;Jo, Yeong Woo;Chang, Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.34-37
    • /
    • 2019
  • Gadolinium contrast agents (CAs) are integral components of clinical magnetic resonance imaging (MRI). However, safety concerns have arisen regarding the use of gadolinium CAs, due to their association with nephrogenic systemic fibrosis (NSF). Furthermore, recently the long-term retention of $Gd^{3+}-based$ CAs in brains patients with normal renal function raised another possible safety issue. The safety concerns of $Gd^{3+}-based$ CAs have been based on the ligand structure of $Gd^{3+}-based$ CAs, and findings that $Gd^{3+}-based$ CAs with linear ligand structures showed much higher incidences of NSF and brain retention of CAs than $Gd^{3+}-based$ CAs with macrocyclic ligand structure. In the current study, we report the in vivo biodistribution profile of a new highly stable multifunctional $Gd^{3+}-based$ CA, with macrocyclic ligand structure (HNP-2006). MR imaging using HNP-2006 demonstrated a significant contrast enhancement in many different organs. Furthermore, the contrast enhanced tumor imaging using HNP-2006 confirmed that this new macrocyclic CA can be used for detecting tumor in the central nervous system. Therefore, this new multifunctional HNP-2006 with macrocyclic ligand structure shows great promise for whole-body clinical application.

Novel Alternative Methods in Toxicity Testing

  • Satoh, Tetsuo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.129-130
    • /
    • 1994
  • The science of toxicology is the understanding of the mechanisms by which exogenous agents produce deleterious effects in biological systems. The actions of chemicals such as drugs are ultimately exerted at the cellular and gene levels. Over the past decade. several in vitro alternative methods such as cultured cells for assessing the toxicity of various xenobiotics have been proposed to reduce the use of animals. In this workshop three advanced methods will be presented. These methods are novel important models for toxicologic studies. Dr. Tabuchis group has establishcd two immortalized gastric surface mucosa cell lines from the pminary cultore of gastric fundic mucosal cells of adult transgenic mice harboring a temperature sensitive simian virus 40 large T-anugen gene. As the immortalized cell lines of various tissues possess unique characteristics to maintain their normal functions for several months, these cell lines are extremely useful for not only toxicity testing but also pharmacological screening in new drug development. Professor Funatsu have studied the formation of spherical multicelluar aggregates of adult rat hepatocytes(spheroid) having tissue like structure. The sphcroid shown thre is a prototype module of an artificial liver support system. Thus, the urea synthesis activity of the artificial liver was maintained at least to days in 100% rat blood plasma. Dr. Takezawa and his coworkers have developed a novel culture system of multicellular spheroids considered 〃organoids〃 by utilizing a thermo-responsive polymer as a substratum of anchorage dependent cells. His final goal is to reconstitute the organoids of various normal organs, e.g., liver, skin etc. and also abnormal deseased organs such as tumor.

  • PDF

SOME EVIDENCE REGARDING REPAIRING, RECOVERY AND OVER-COMPENSATING PROCESSES DURING ONTOGENESIS, AFTERX-RAY-IRRADTATION OF BEAN SEEDS

  • Korosi, F.;Jezierska-Szabo, E.;Laszlo, P.;Felfoldi, J.
    • Korean Journal of Organic Agriculture
    • /
    • v.3 no.1
    • /
    • pp.11-22
    • /
    • 1994
  • Exposing plant organs to high doses of ionizing irradiation, penetrating into the plant tis-sues and cells, along the track structure of particles, lesions, and sublesions are formed on the molecules and organelles. As a result, disorders in the growth and development as well as chlorophyll-deficiency symptoms occur. The time scale of their reparation, recovery and over compensation during ontogenesis, constitutes a question of high theoretical and practical importanced, with special regard to nuclear fallout. With an aim to model the “ut supra”stated phenomena, the seeds of bean, Echo elit licensed variety, were irradiated by 300 Gy dose of X-ray-irradiation (120 kV:4.5 mA). According to the data obtained, the biosynthesis of photosynthetic pigments, will have been completed by the beginning of flowering. In consequence of the overcompensation of the repairing processes, the organs of plants developed from irradiated seeds, showed a partly differing correlative growth, compared to those of control plants. In order to characterize the vivo response of radiation-injured plants, a new method and approach were used. The changes of the electric capacitance of the plants during their ontogenesis, were continously monitored and recorede via a computer-aided and controlled measurement. In view of the data collected in such a way, the repairing plants may respond more quickly and intensively to the changes of environmental factors.

  • PDF