• Title/Summary/Keyword: structure modeling

Search Result 3,658, Processing Time 0.031 seconds

Development of Ontology-based Intelligent Mold Design System (온톨로지 기반 지능형 금형 설계 시스템의 개발)

  • Lee, Sang-Hun;Kang, Mu-Jin;Eum, Kwang-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.167-177
    • /
    • 2011
  • This paper describes an ontology-based intelligent CAD system for injection mold design, which has been developed based on a commercial CAD system called Unigraphics and an ontological framework for representing the implicit design knowledge as well as the explicit based on the extended function-behavior-structure (FBS) engineering design model that includes the constraint. The system also provides various convenient solid modeling capabilities for mold design and the design process modeling capability that facilitates mold redesign process.

Development of a method for modeling arbitrarily shaped body (복합형상 모델링 기법의 개발)

  • 이강수;이건우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.567-572
    • /
    • 1988
  • As an efficient way of modeling bodies of complicated shapes, the sweeping and skinning operations have been implemented. These two operations are very powerful modeling method when the body is defined by the cross sections at various locations. For the implementation, the data structure for storing the cross sections and the resulting three dimensional body has been constructed. The resulting object is defined by the boundary representation based on the non-uniform nonperiodic B-spline surface.

  • PDF

Model-based Design for Autonomous Defense Systmes (자치적 방어 시스템을 위한 모델베이스기반 설계)

  • 이종근
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.1
    • /
    • pp.89-99
    • /
    • 1999
  • The major objective of this research is to propose a design architecture for autonomous defense systems for supporting highly intelligent behavior by combining decision, perception, and action components. Systems with such high levels of autonomy are critical for advanced battlefield missions. By integrating a plenty of advanced modeling concepts such as system entity structure, endomorphic modeling, engine-based modeling, and hierarchical encapsulation & abstraction principle, we have proposed four layered design methodology for autonomous defense systems that can support an intelligent behavior under the complicated and unstable warfare. Proposed methodology has been successfully applied to a design of autonomous tank systems capable of supporting the autonomous planning, sensing, control, and diagnosis.

  • PDF

Design and Implementation of Conversion System from UML Class Diagram to XML DTD (UML 클래스 다이어그램을 XML DTD로의 변환 시스템 설계 및 구현)

  • Hong, Do-Seok;Ha, Yan;Kim, Yong-Sung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.12
    • /
    • pp.3829-3839
    • /
    • 2000
  • The UML(Unified Modeling Language) Class Diagram which is a part of structure of UML is fit for Object Modeling, and more recently, as the appearance of UXF(UML eXchange Format) UML Class Diagram by itself, can be exchanged in many other different system document. So this paper suggest the conversion system from UML Class Diagram to XML DTD. As this we can easily transformation and saving the UML Class Diagram that is the standard of Modeling Language to XML document which is so reusable. Also it can give a flexible method for the representation to the logical structure of document in various way because of converting XML DTD.

  • PDF

Modeling of Silicon Etch in KOH for MEMS Based Energy Harvester Fabrication (MEMS기반 에너지 하베스터 제작을 위한 실리콘 KOH 식각 모형화)

  • Min, Chul-Hong;Gang, Gyeong-Woo;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.176-181
    • /
    • 2012
  • Due to the high etch rate and low fabrication cost, the wet etching of silicon using KOH etchant is widely used in MEMS fabrication area. However, anisotropic etch characteristic obstruct intuitional mask design and compensation structures are required for mask design level. Therefore, the accurate modeling for various types of silicon surface is essential for fabrication of three-dimensional MEMS structure. In this paper, we modeled KOH etch profile for MEMS based energy harvester using fuzzy logic. Modeling results are compared with experimental results and it is applied to design of compensation structure for MEMS based energy harvester. Through Fuzzy inference approaches, developed model showed good agreement with the experimental results with limited etch rate information.

on-line Modeling of Nonlinear Process Systems using the Adaptive Fuzzy-neural Networks (적응퍼지-뉴럴네트워크를 이용한 비선형 공정의 온-라인 모델링)

  • 오성권;박병준;박춘성
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1293-1302
    • /
    • 1999
  • In this paper, an on-line process scheme is presented for implementation of a intelligent on-line modeling of nonlinear complex system. The proposed on-line process scheme is composed of FNN-based model algorithm and PLC-based simulator, Here, an adaptive fuzzy-neural networks and HCM(Hard C-Means) clustering method are used as an intelligent identification algorithm for on-line modeling. The adaptive fuzzy-neural networks consists of two distinct modifiable sturctures such as the premise and the consequence part. The parameters of two structures are adapted by a combined hybrid learning algorithm of gradient decent method and least square method. Also we design an interface S/W between PLC(Proguammable Logic Controller) and main PC computer, and construct a monitoring and control simulator for real process system. Accordingly the on-line identification algorithm and interface S/W are used to obtain the on-line FNN model structure and to accomplish the on-line modeling. And using some I/O data gathered partly in the field(plant), computer simulation is carried out to evaluate the performance of FNN model structure generated by the on-line identification algorithm. This simulation results show that the proposed technique can produce the optimal fuzzy model with higher accuracy and feasibility than other works achieved previously.

  • PDF

3D Tunnel Modeling by Parametric Representation of Geometry (매개변수식 기하 표현법에 의한 3차원 터널 모델링)

  • 이형우;신대석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.33-42
    • /
    • 2002
  • A method of automatic 3D tunnel modeling is proposed. The proposed method used the parametric representation of geometry and a hierarchical and relational data structure. These two bases provide the generalization and extension for 3D tunnel modeling. Especially, these two fundamentals ion the basis iota representing the characteristics of the tunnel structure for analysis. The constant-curvature characteristic is exploited to generate 3D mesh on the tunnel surface. This is attributed to the advantage that any 2D automatic mesh generation algorithm can be applied to 3D mesh modeling.

An Assembly Modeling System for Dynamic and Kinematic Analysis (동역학 및 기구학적 해석을 위한 조립체 모델링 시스템)

  • 김성환;이건우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.48-58
    • /
    • 1989
  • An assembly modeling system, with which a designer can interactively create an assembly of components ready for the dynamic analysis, has been developed. In this system, an assembly model is created from the mating conditions between the components in the assembly, and then most information required for the dynamic or kinematic analysis packages are derived. For this development, the following problems have been solved; the creation of assembly data structure, the derivation of the joint information, the inference of each component's position, and the creation of the joint coordinate systems. Through this work, the designer can easily model an assembly by assigning mating conditions, and check the dynamic or kinematic performance with the automatic creation of inputs for the assembly analysis packages.

Implementation of Concurrent Engineering for Large Assembly Design:Part(I)- Assembly-centric Modeling Methodology as BOM Structrue- (부품수가 많은 조립체 설계를 위한 동시공학의 구현: Part(I)- BOM에 따른 조립체 중심적 모델링 방법론-)

  • 정융호
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.93-102
    • /
    • 1997
  • Most design changes are due to interferences and fit-up as parts are assembled if such a large product as an automobile or an aircraft is developed by many concurrent engineers. In this part (1) of the thesis, the assembly-centric modeling methodology with CAD systems is proposed in order to reduce the design changes. Unlike part-centric modeling method, a part is modeled with its own coordinate system which is used in downstream process as machining and measuring. The part coordinates initially have the same orientation as its assembly which is predefined in BOM (Bill of Material). Then, the corrdinates origin of the part is moved to its location to be assembled from that of its assembly coordinate system. To implement this methodology, the position data of the part w.r.t. its assembly are stored in a database to build the same hierarchical assembling structure as BOM structure. This modeling approach has the advantage of reflecting asembling sequence, because the process of positioning parts is similar to that of real assembling. And with the method, a designer can easily adjust all of the part positions of an assembly to resolve interferences if he modifies just the coordinates origin of the assembly, which results in moving included parts and assemblies together.

  • PDF

A new stability and sensitivity design and diagnosis approach

  • Sari, Ali;Korkmaz, Kasim A.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.683-690
    • /
    • 2017
  • In the stability and sensitivity design and diagnosis approaches, there are various methodologies available. Bond graph modeling by lumping technique is one of the universal methodologies in methodical analysis used by many researchers in all over the world. The accuracy of the method is validated in different arenas. Bond graphs are a concise, pictorial representation of the energy storage, dissipation and exchange mechanisms of interacting dynamic systems, subsystems and components. This paper proposes a bond graph modeling for distributed parameter systems using lumping techniques. Therefore, a steel frame structure was modeled to analyze employing bond graph modeling of distributed system using lumping technique. In the analytical part, the effectiveness of bond graphs to model this system is demonstrated. The dynamic responses of the system were computed and compared with those computed from the finite element analysis. The calculated maximum deflection time histories were found to be comparable. The sensitivity and the stability of the steel frame structure was also studied in different aspects. Thus, the proposed methodology, with its simplicity, can be used for stability and sensitivity analyses as alternative to finite element method for steel structures. The major value brought in the practical design is the simplicity of the proposed method for steel structures.