• Title/Summary/Keyword: structure member

Search Result 1,078, Processing Time 0.028 seconds

The Type and Development for Structure System with Non-rigid Member (대공간 연성 구조시스템의 종류와 발달과정)

  • Lee, Ju-Na;Park, Sun-Woo;Park, Chan-Soo
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.148-157
    • /
    • 2004
  • The structure systems with non-rigid member were classified by the composition type of line and surface members. As a result of the classification, there are 1-way cable structure, cable net and radial cable net structure in the line member system. And there are pneumatic structure and suspension membrane structure in surface member system. In addition, when the line and surface members are composed together, there is the hybrid membrane system which are divided into hanging type and supported type. In this paper, the Korean terms of structure systems with non-rigid member are recommended through this classification. In each the structure systems with non-rigid member, the examples were also investigated considering their historical developments. It present that the light weight structure system and the openness of space have pursued with the developments. So largely, cable net structure with membrane, membrane structure and hybrid structure have used in these days.

  • PDF

Dynamic nonlinear member failure propagation in truss structures

  • Malla, Ramesh B.;Nalluri, Butchi B.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.111-126
    • /
    • 2000
  • Truss type structures are attractive to a variety of engineering applications on earth as well as in space due to their high stiffness to mass ratios and ease of construction and fabrication. During the service life, an individual member of a truss structure may lose load carrying capacity due to many reasons, which may lead to collapse of the structure. An analytical and computational procedure has been developed to study the response of truss structures subject to member failure under static and dynamic loadings. Emphasis is given to the dynamic effects of member failure and the propagation of local damage to other parts of the structure. The methodology developed is based on nonlinear finite element analysis technique and considers elasto-plastic material nonlinearity, postbuckling of members, and large deformation geometric nonlinearity. The pseudo force approach is used to represent the member failure. Results obtained for a planar nine-bay indeterminate truss undergoing sequential member failure show that failure of one member can initiate failure of several members in the structure.

The Term and Classification of Structure System with Non-rigid Member (연성구조시스템의 분류체계와 용어)

  • Lee, Ju-Na;Park, Sun-Woo;Kim, Seung-Deog;Park, Chan-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.2 s.12
    • /
    • pp.99-105
    • /
    • 2004
  • The structure systems with non-rigid member were classified by the composition type of line and surface members. As a result of the classification, there are 1-way cable structure, cable net and radial cable net structure in the line member system. And there are pneumatic structure and suspension membrane structure in surface member system. In addition, when the line and surface members are composed together, there is the hybrid membrane system which are divided into hanging type and supported type. In this paper, the Korean terms of structure systems with non-rigid member are recommended through this classification.

  • PDF

Design Automatization of Space Truss Structure Using Optimizations Technique (최적화 기법을 이용한 3차원 트러스 구조물의 설계자동화)

  • 최은규;임기식;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.81-90
    • /
    • 1993
  • The optimum design of a structure requires the determination of the economical member size and shape of the structure which satisfies the design condition and function. In this study, the process of design automatization of three-dimensional truss structure introduces the optimization technique tests its application in the design automatization, proposes its application method and applies the example structure of the parabolic antenna truss. Using the Formex Algebra of configuration function, the structure's mesh-generation is automatized. By using the program developed in this study, the input member array, member size and load condition designer can generate the input data file for the structure analysis and optimum design. This study is aimed at the development of a design automatization system that search for tile optimum value of a structure design by observing the structure's sensitivity from the modification of member array and member property.

  • PDF

A mathematical model for the along-wind coefficient of tower crane based on the member load

  • Wei Chen;Xianrong Qin;Zhigang Yang
    • Wind and Structures
    • /
    • v.37 no.5
    • /
    • pp.347-359
    • /
    • 2023
  • The along-wind coefficient is the key parameter for wind load calculations in tower crane structure design. It is often calculated using overall parameter characteristics, which may lead to inaccurate results. In this study, six types of tower masts and four types of tower jibs with different overall structural characteristics and member characteristics are established. Through wind tunnel force tests and CFD numerical simulation, the along-wind coefficient of the overall structure and each member are obtained. Based on the characteristics of the slenderness ratio and spacing ratio of the members, a mathematical model for calculating the along-wind coefficient of the tower crane structure is proposed. The calculated results are in accordance with the wind tunnel test results. The maximum relative error is -6.25%, and the minimum relative error is 0.68%. To ensure accuracy, it is necessary to calculate the along-wind coefficient of the tower crane structure based on the load of each structure member rather than using overall parameter characteristics.

The Type of Composition and Classification of Tension Structure Systems in Architecture (건축 인장구조시스템의 분류와 구성유형)

  • Lee, Ju-Na;Park, Sun-Woo;Park, Chan-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.3 s.9
    • /
    • pp.111-120
    • /
    • 2003
  • Tension members is a type of effective structural member, which is often used in large span structures. The structure systems composed with tension members are combined in various way and specific formations. So, there are need to research into the formations of tension structure and the type of adaptation in tension structure architectures. The structure systems with tension members were considered as tension main system, vector system and tension supported bending system, comprehensively. And tension structures were classified into the formation of tension structure with uniaxial or multiaxial line tension member, with surface member, with hybrid member of line and surface, concerning the flow of tension force. In each the formation of tension structure, the typical adaptations to architecture were also investigated through architecture examples. The type of the formation can be used to plan an architecture with respect to the flow of tension force and structural feature.

  • PDF

A New Electrode Structure for Color-shift Reduction in PVA LCD

  • Kwon, Yong-Hoan;Baek, Jong-In;Kim, Jae-Chang;Yoon, Tae-Hoon
    • Journal of Information Display
    • /
    • v.8 no.3
    • /
    • pp.17-21
    • /
    • 2007
  • We introduce a new electrode structure for the patterned vertical alignment (PVA) mode, which has a lower color-shift at large viewing angle than the one-domain VA mode. By manipulating the period of electrode structure, we can make more multi-domains and use the existing fabrication processes without having to use additional materials.

The Development and Historical Character for Structure System with Non-rigid Member (연성구조시스템의 발달과정과 역사적 특성)

  • Lee, Ju-Na;Park, Sun-Woo;Park, Chan-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.93-101
    • /
    • 2004
  • Structural systems have a lot of architectural meaning concerning historical context of structural technology. Therefore, surveying constructed examples and their constructed year, the character and development of various formations of structure systems with non-rigid member were investigated. At the result, the early modem structure systems with non-rigid member were made up from the cable structures, then membrane structures have mainly used after 1970's. The early structural systems had intended to make the large scale space, after 1970's, they have been adopted into the smaller scale space structure, and cable net structure, pneumatic structure and dome typed hybrid membrane system tend to compose the larger scale spare structure.

  • PDF

Influence of end fixity on post-yield behaviors of a tubular member

  • Cho, Kyu Nam
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.557-568
    • /
    • 2002
  • For the evaluation of the capability of a tubular member of an offshore structure to absorb the collision energy, a simple method can be employed for the collision analysis without performing the detailed analysis. The most common simple method is the rigid-plastic method. However, in this method any characteristics for horizontal movement and rotation at the ends of the corresponding tubular member are not included. In a real structural system of an offshore structure, tubular members sustain a certain degree of elastic support from the adjacent structure. End fixity has influences in the behaviors of a tubular member. Three-dimensional FEM analysis can include the effect of end fixity fully, however in viewpoints of the inherent computational complexities of the 3-D approach, this is not the recommendable analysis at the initial design stage. In this paper, influence of end fixity on the behaviors of a tubular member is investigated, through a new approach and other approaches. A new analysis approach that includes the flexibility of the boundary points of the member is developed here. The flexibility at the ends of a tubular element is extracted using the rational reduction of the modeling characteristics. The property reduction is based on the static condensation of the related global stiffness matrix of a model to end nodal points of the tubular element. The load-displacement relation at the collision point of the tubular member with and without the end flexibility is obtained and compared. The new method lies between the rigid-plastic method and the 3-demensional analysis. It is self-evident that the rigid-plastic method gives high strengthening membrane effect of the member during global deformation, resulting in a steeper slope than the present method. On the while, full 3-D analysis gives less strengthening membrane effect on the member, resulting in a slow going load-displacement curve. Comparison of the load-displacement curves by the new approach with those by conventional methods gives the figures of the influence of end fixity on post-yielding behaviors of the relevant tubular member. One of the main contributions of this investigation is the development of an analytical rational procedure to figure out the post-yielding behaviors of a tubular member in offshore structures.

Effect of Reference Axis of RC Buildings on Seismic Design Member Forces (RC 건물에서 주축의 설정이 설계지진력에 미치는 영향)

  • Lee, Han-Seon;Ko, Dong-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.704-707
    • /
    • 2004
  • The structure should be designed to be safe to any direction of earthquake input. However, the reference axes whereby the structure is analyzed and designed against earthquake may influence the design member forces. This study is concerned with the effect of the choice of the reference axes on the seismic design member forces. The analytical results on member forces using the principal axes suggested by Wilson and the global axes generally adopted in design offices show that the values of member forces by the principal axes be about $15\%$ smaller than those by the global axes in the example structure.

  • PDF