Linear models, with and without site variables, have been investigated in order to develop an alternative methodology for determining optimal fertilizer levels. The resultant models are : (1) Model I is an ordinary quadratic response function formed by combining the simple response function estimated at each site in block diagonal form, and has parameters [${\gamma}^{(1)}_{m{\ell}}$], for m=1, 2, ${\cdots}$, n sites and degrees of polynomial, ${\ell}$=0, 1, 2. (2) Mode II is a multiple regression model with a set of site variables (including an intercept) repeated for each fertilizer level and the linear and quadratic terms of the fertilizer variables arranged in block diagonal form as in Model I. The parameters are equal to [${\beta}_h\;{\gamma}^{(2)}_{m{\ell}}$] for h=0, 1, 2, ${\cdots}$, k site variable, m=1, 2, ${\cdots}$ and ${\ell}$=1, 2. (3) Model III is a classical response surface model, I. e., a common quadratic polynomial model for the fertilizer variables augmented with site variables and interactions between site variables and the linear fertilizer terms. The parameters are equal to [${\beta}_h\;{\gamma}_{\ell}\;{\theta}_h$], for h=0, 1, ${\cdots}$, k, ${\ell}$=1, 2, and h'=1, 2, ${\cdots}$, k. (4) Model IV has the same basic structure as Mode I, but estimation procedure involves two stages. In stage 1, yields for each fertilizer level are regressed on the site variables and the resulting predicted yields for each site are then regressed on the fertilizer variables in stage 2. Each model has been evaluated under the assumption that Model III is the postulated true response function. Under this assumption, Models I, II and IV give biased estimators of the linear fertilizer response parameter which depend on the interaction between site variables and applied fertilizer variables. When the interaction is significant, Model III is the most efficient for calculation of optimal fertilizer level. It has been found that Model IV is always more efficient than Models I and II, with efficiency depending on the magnitude of ${\lambda}m$, the mth diagonal element of X (X' X)' X' where X is the site variable matrix. When the site variable by linear fertilizer interaction parameters are zero or when the estimated interactions are not important, it is demonstrated that Model IV can be a reasonable alternative model for calculation of optimal fertilizer level. The efficiencies of the models are compared us ing data from 256 fertilizer trials on rice conducted in Korea. Although Model III is usually preferred, the empirical results from the data analysis support the feasibility of using Model IV in practice when the estimated interaction term between measured soil organic matter and applied nitrogen is not important.