• 제목/요약/키워드: structure material

검색결과 9,407건 처리시간 0.03초

미시역학을 고려한 복합재료의 유한요소해석 및 유효 물성치 평가 (Micromechanical Finite Element Analysis and Effective Material Property Evaluation of Composite Materials)

  • 이승표;정재연;하성규
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.220-223
    • /
    • 2003
  • The methodology of micromechanical finite element method (MFEM) is proposed to calculate the micromechanical strains on fiber and matrix under mechanical and thermal loadings. For micromechanical analysis, composite structure is idealized the square and hexagonal unit cells. Boundary conditions are determined to calculate the effective material properties of composites and the strain magnification matrix. And they are verified by comparing with the results from multi cells, and the strain distributions of the unit cells are in accordance with those of the multi cells. Finally, the effective material properties of composite structure are obtained with respect to its fiber volume fraction and compared with results from rules-of-mixture.

  • PDF

액상형 규산질계 침투성 방수재의 성능평가에 관한 연구 (A Study on a Performance evaluation for Quality Liguid Siliceous of Waterproof agent)

  • 강효진;권시원;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문 발표회
    • /
    • pp.63-67
    • /
    • 2003
  • There are many factors that generate the early deterioration of the concrete structure. As the one of the representative factors, we can think an invasion of the water, air and so on. The water and air invade in inside void along the capillarity and they become the cause that the durability like corrosion of layer department due to freezing and thawing, inside steel frame corrosion, and so on blacks. Therefore with covering permeability covering waterproofing material of fluid condition in outer wall, intercepting the deterioration factor due to the infiltration of water from outside and for salt damage of concrete layer department, freezing damage and neutralization, it needs, to improve durability of structure. This study separately examined physical and chemical specific of quality liguid siliceous of waterproofing material. Therefore as this applys the construction site, it improves the durability of concrete structure. Further this presents the application plan from the construction market against the new material.

  • PDF

Materials Flow Analysis of Metallic Cobalt and Its Powder in Korea

  • Hon, Hyun Seon;Kang, Lee-Seung;Kang, Hong-Yoon;Suk, Han-Gil
    • 한국분말재료학회지
    • /
    • 제21권3호
    • /
    • pp.235-240
    • /
    • 2014
  • The basis of the cobalt demand analysis by use was established via the investigation and analysis of the cobalt materials flow, and the overall cobalt metal material and parts industry structure in Korea was examined to determine the cobalt material flow. The markets of the cobalt material for machinery were studied, including their interrelations, via market and study trends, and relevant plans were examined. The results of the study indicated that the advanced core technology for advanced industry and technology-intensive industry development is required to structurally innovate the parts materials and basic materials industries and to upgrade the catch-up industry structure to the new frontier structure.

액상형 규산질계 침투성 방수재의 성능평가에 관한 연구 (A Study on a Performance evaluation for Quality Liguid Siliceous of waterproof agent)

  • 강효진;권시원;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.63-67
    • /
    • 2003
  • There are many factors that generate the early deterioration of the concrete structure. As the one of the representative factors, we can think an invasion of the water, air and so on. The water and air invade in inside void along the capillarity and they become the cause that the durability like corrosion of layer department due to freezing and thawing, inside steel frame corrosion, and so on blacks. Therefore with covering permeability covering waterproofing material of fluid condition in outer wall, intercepting the deterioration factor due to the infiltration of water from outside and for salt damage of concrete layer department, freezing damage and neutralization, it needs to improve durability of structure. This study separately examined physical and chemical specific of quality liquid siliceous of waterproofing material. Therefore as this applys the construction site, it improves the durability of concrete structure. Further this presents the application plan from the construction market against the new material.

  • PDF

자가치아골이식재의 결정구조 분석: X선 회절 분석 (Analysis of crystalline structure of autogenous tooth bone graft material: X-Ray diffraction analysis)

  • 김경욱;여인성;김수관;엄인웅;김영균
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제37권3호
    • /
    • pp.225-228
    • /
    • 2011
  • This study evaluated the mineral crystalline structure of an autogenous tooth bone graft material. The crystalline structures of the autogenous tooth bone graft material enamel (AutoBT E+), dentin (AutoBT D+), xenograft (BioOss), alloplastic material (MBCP), allograft (ICB) and autogenous mandibular cortical bone were compared using XRD. The XRD pattern of AutoBT dentin and ICB was similar to that of autogenous bone.

LTCC System 에서의 Stripline 구조 특성 연구 (Analysis of Stripline Structure(Resonator) in LTCC System)

  • 유찬세;이우성;강남기;박종철
    • 마이크로전자및패키징학회지
    • /
    • 제9권3호
    • /
    • pp.13-17
    • /
    • 2002
  • LTCC를 이용하여 2차원, 3차원 회로를 구성하는 경우에 R, L, C의 수동소자 이외에 stripline이나 microstripline인 같은 전송선로들이 첨가되게 된다. 따라서 이러한 전송선로들에 대한 정확한 분석을 필요로 하게 된다. 전송선로의 특성에서 유전체의 유효 유전율과 유전체 손실값, 도체의 유효 전기전 도도와 같은 물성치와 도체 및 유전체 표면의 거칠기, 구조의 크기와 같은 기하학적인 특성들이 영향을 주게 된다. 본 연구에서는 스트립라인 구조을 대상으로 위의 물성치와 구조에 관한 변수들을 정량화 함으로써 stripline구조를 분석하고 그 특성을 정량화하였다.

  • PDF

친환경 연성모르타르와 섬유로드를 이용한 내진보강 방안에 관한 연구 (A Study on the Seismic Rehabilitation Method through Using Environmentally-friendly Ductile Mortar and Fiber Materials)

  • 백종명;신민호;김한배;김박진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3237-3250
    • /
    • 2011
  • As the growing concern about environment and earthquake for the concrete structure, many seismic rehabilitation and retrofitting methods have recently been studied but they are not coping enough with the changes of structure, specificly various problems have been found in seismic rehabilitation method - both in exposure or non exposure - when they are implemented to the underground structure, utility conduit, water supply facilities, underground wall, parking lot, road pavement, and elevated structure etc. This study is about the seismic rehabilitation method using environmentally friendly functional inorganic mortar and resilient material, and it is effectively retrofitted seismic performance as it reinforces not only physical strength, but also flexural and bond strength from the resilient material, and it has been analyzed and evaluated when the environmentally friendly functional inorganic mortar and the resilient material are applied so as to countermeasure the effect of earthquake and viable problems and approved for possibility of various applications and wide use.

  • PDF

공작기계를 위한 보와 평판의 샌드위치 구조 설계에 관한 파라메트릭 연구 (Parametric Study on the Design of Sandwich Beams and Plates for Machine Tool Structures)

  • 김대일;장승환
    • 한국공작기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.39-48
    • /
    • 2006
  • In this paper, polymer composites based sandwich structures like beams and plates are optimised by using parametric study. The structures are composed of fibre reinforced composites for facial material and resin concrete and PVC foam for core materials. The stacking sequences and thickness of the composites are controlled as major parameters to find out the optimal condition for machine tool components. For the plate structure of machine tool bed composites-skined sandwich structure which has several ribs are proposed to enhance bending stiffnesses in two major directions at the same time. Dynamic robustness of a machine tool structure is investigated using modal analysis. From the results optimal configuration and materials for high precesion machine tools are proposed. And the plate was made of fiber reforced composite material and PVC foam.

콘크리트구조물에 적용하는 액상형 규산질계 침투성 방수재의 성능평가에 관한 연구 (A Study on a Performance evaluation for Quality Liguid Siliceous of waterproof agent using on the concrete Structure)

  • 강효진;권시원;오상근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.184-187
    • /
    • 2004
  • There are many factors that generate the early deterioration of the concrete structure. As the one of the representative factors, we can think an invasion of the water, air and so on. The water and air invade in inside void along the capillarity and they become the cause that the durability like corrosion of layer department due to freezing and thawing, inside steel frame corrosion, and so on blacks. Therefore with covering permeability covering waterproofing material of fluid condition in outer wall, intercepting the deterioration factor due to the infiltration of water from outside and for salt damage of concrete layer department, freezing damage and neutralization, it needs to improve durability of structure. This study separately examined physical and chemical specific of quality liguid siliceous of waterproofing material. Therefore as this applys the construction site, it improves the durability of concrete structure. Further this presents the application plan from the construction market against the new material.

  • PDF

Seismic collapse probability of eccentrically braced steel frames

  • Qi, Yongsheng;Li, Weiqing;Feng, Ningning
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.37-52
    • /
    • 2017
  • To quantitatively assess the safety against seismic collapse of eccentrically braced steel frame (EBSF) system, 24 typical EBSFs with K-shape and V-shape braces with seismic precautionary intensities 8 and 9 were designed complying with China seismic design code and relative codes to constitute archetype space of this structure system. In the archetype space, the collapse probability of the structural system under maximum considered earthquakes (MCE) was researched. The results show that the structures possess necessary safety against seismic collapse when they respectively encounter the maximum considered earthquakes corresponding to their seismic precautionary levels, and their collapse probabilities increase with increasing seismic precautionary intensities. Moreover, the EBSFs with V-shape braces have smaller collapse probability, thus greater capacity against seismic collapse than those with K-shape braces.