• Title/Summary/Keyword: structure control

Search Result 9,646, Processing Time 0.037 seconds

Average performance of risk-sensitive controlled orbiting satellite and three-degree-of-freedom structure

  • Won, Chang-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.444-447
    • /
    • 1995
  • The satellite in a circular orbit about a planet with disturbances and a three-degree-of-freedom (3DOF) structure under seismic excitations are modeled by the linear stochastic differential equations. Then the risk-sensitive optimal control method is applied to those equations. The mean and the variance of the cost function varies with respect to the risk-sensitivity parameter, .gamma.$_{RS}$ . For a particular risk-sensitivity parameter value, risk-sensitive control reduces to LQG control. Furthermore, the derivation of the mean square value of the state and control action are given for a finite-horizon full-state-feedback risk-sensitive control system. The risk-sensitive controller outperforms a classical LQG controller in the mean square sense of the state and the control action.

  • PDF

Vibration Suppression of Smart Structures Using a Combined PPF-SRF Control Technique (PPF와 SRF 조합기법을 사용한 지능구조물의 능동진동제어)

  • 곽문규;라완규;윤광준
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.811-817
    • /
    • 1997
  • This paper is concerned with the active vibration controller design for the grid structure based on the positive position feedback (PPF) and the strain rate feedback (SRF) control. A new control methodology by the combination of the PPF and SRF control can suppress all the modes of the structure theoretically and can be easily implemented with analog circuits. The underlying concept for the design of the new controller is that the SRF controller stabilizes the modes higher than the second mode and the PPF controller stabilizes the fundamental mode which is destabilized by the SRF controller. In order for the new controller to be implemented succesfully, the collocated control is necessary. To this end, the piezoceramic sensor and actuator are located as close as possible, thus realizing the nearly collocated control. The combined PPF and ARF controller proves its effectiveness by experiments.

  • PDF

Variable Structure Control for Mechatronics Application (메카트로닉스에의 적용을 위한 가변구조제어)

  • Park, Jae-Sam;Chung, Byung-Tae
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1997.11a
    • /
    • pp.463-471
    • /
    • 1997
  • In this paper, a new variable structure controller (VSC) is presented. The presented VSC can be applicable to most mechatronic systems such as robotics. A VSC (or also called sliding mode control;SMC) algorithm is presented first, and next, a VSC with nonlinear integral control algorithms is presented. The algorithms use no linear approximation for the derivation of the control law or in the stability proof. It is shown that the robustness of the developed algorithms are guaranteed by the sliding mode control and that the algorithms are globally convergent.

  • PDF

Vibration and Position Tracking Control of a Smart Structure Using SMA Actuators (형상기억합금 작동기를 이용한 스마트 구조물의 진동 및 위치 추적제어)

  • Park, N.J.;Choi, S.B.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.155-163
    • /
    • 1996
  • This paper presents vibration and position tracking control of a smart structure using shape memory alloy(SMA) actuators. A governing equation of motion of the proposed structure is obtained via Hamilton's princeple. The dynamic characteristics of the SMA actuator are experimentally identified and incorporated with the governing equation to furnish a control system model. Subsequently, a sliding mode controller which has inherent robustness to external disturbances is formulated on the basis of the sliding mode conplacement, and also for the position tracking control of desired trajectories with low-frequency sine and square waves.

  • PDF

Seismic Response Control of Arch Structures using Semi-active TMD (준능동 TMD를 이용한 아치구조물의 지진응답제어)

  • Kang, Joo-Won;Kim, Gee-Cheol;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.103-110
    • /
    • 2010
  • In this study, the possibility of seismic response control of semi-active tuned mass damper (TMD) for spatial structures has been investigated. To this end, an arch structure was used as an example structure because it has primary characteristics of spatial structures and it is a comparatively simple structure. A TMD and semi-active TMD were applied to the example arch structure and the seismic control performance of them were evaluated based on the numerical simulation. In order to regulate the damping force of the semi-active TMD, groundhook control algorithm, which is widely used for semi-active control, was used. El Centro (1940) and Northridge (1994) earthquakes and harmonic ground motion were used for performance evaluation of passive TMD and semi-active TMD. Based on the analytical results, the passive TMD could effectively reduce the seismic responses of the arch structure and it has been shown that the semi-active TMD more effectively decreased the dynamic responses of the arch structure compared to the passive TMD with respect to all the excitations used in this study.

  • PDF

Application of TMD for Seismic Response Control of Dome Structure (돔 구조물의 지진응답 제어를 위한 TMD의 적용)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.99-108
    • /
    • 2012
  • Vibration control devices are classified into passive, semi-active and active device. TMD(Tuned Mass Damper) is one of the passive control device that is mainly used to reduce vibration level of building structure and bridge structure. In this study, the application of passive tuned mass damper(TMD) to seismic response control of dome structures has been investigated. Because star dome structure has primary characteristics of dome structures, star dome structure was used as an example dome structure that is subjected to horizontal or vertical seismic loads. From this numerical analysis, it is shown that seismic response are influenced by vibration modes and it is reasonable to install TMD to the dominant points of each mode. And it is found that the passive TMD could effectively reduce the seismic responses of dome structure.

Rate control to reduce bitrate fluctuation on HEVC

  • Yoo, Jonghun;Nam, Junghak;Ryu, Jiwoo;Sim, Donggyu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.152-160
    • /
    • 2012
  • This paper proposes a frame-level rate control algorithm for low delay video applications to reduce the fluctuations in the bitrate. The proposed algorithm minimizes the bitrate fluctuations in two ways with minimal coding loss. First, the proposed rate control applies R-Q model to all frames including the first frame of every group of pictures (GOP) except for the first one of a sequence. Conventional rate control algorithms do not use any R-Q models for the first frame of each GOP and do not estimate the generated-bit. An unexpected output rate result from the first frame affects the remainder of the pictures in the rate control. Second, a rate-distortion (R-D) cost is calculated regardless of the hierarchical coding structure for low bitrate fluctuations because the hierarchical coding structure controls the output bitrate in rate distortion optimization (RDO) process. The experimental results show that the average variance of per-frame bits with the proposed algorithm can reduce by approximately 33.8% with a delta peak signal-to-noise ratio (PSNR) degradation of 1.4dB for a "low-delay B" coding structure and by approximately 35.7% with a delta-PSNR degradation of 1.3dB for a "low-delay P" coding structure, compared to HM 8.0 rate control.

  • PDF

Active control of a flexible structure with time delay

  • Cai, Guo-Ping;Yang, Simon X.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.191-207
    • /
    • 2005
  • Time delay exists inevitably in active control, which may not only degrade the system performance but also render instability to the dynamic system. In this paper, a novel active controller is developed to solve the time delay problem in flexible structures. By using the independent modal space control method, the differential equation of the controlled mode with time delay is obtained from the time-delay system dynamics. Then it is discretized and changed into a first-order difference equation without any explicit time delay by augmenting the state variables. The modal controller is derived based on the augmented system using the discrete variable structure control method. The switching surface is determined by minimizing a discrete quadratic performance index. The modal coordinate is extracted from sensor measurements and the actuator control force is converted from the modal one. Since the time delay is explicitly included throughout the entire controller design without any approximation, the system performance and stability are guaranteed. Numerical simulations show that the proposed controller is feasible and effective in active vibration control of dynamic systems with time delay. If the time delay is not explicitly included in the controller design, instability may occur.

Performance Evaluation of Decentralized Control Algorithm of a Full-scale 5-story Structure Installed with Semi-active MR Damper Excited by Seismic Load (준능동 MR감쇠기가 설치된 실물크기 구조물의 분산제어 알고리즘 성능평가)

  • Youn, Kyung-Jo;Park, Eun-Churn;Lee, Heon-Jae;Moon, Seok-Jun;Min, Kyung-Won;Jung, Hyung-Jo;Lee, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.255-262
    • /
    • 2008
  • In this study, seismic response control performance of decentralized response-dependent MR damper which generates the control force using only the response of damper-installed floor, was experimentally investigated through the tests of a full-scale structure installed with large MR dampers. The performance of the decentralized control algorithm was compared to those of the centralized ones such as Lyapunov, modulated homogeneous friction, and clipped-optimal control. Hybrid mass damper were controlled to induce seismic response of the full-scale structure under El Centro earthquake. Experimental results indicated that the proposed decentralized MR damper provided superior or equivalent performance to centralized one in spite of using damper-installed floor response for calculating input voltage to MR damper.

Control of a Toroidal Type Rotor with a Magnetic Bearing Structure for the Gyro Actuator (자이로 구동기를 위한 자기베어링 구조의 토로이달 형 회전자 제어)

  • Jou, Sung-Tak;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1703-1708
    • /
    • 2015
  • This paper deals with the position and torque control of a toroidal type rotor which has a magnetic bearing structure. The proposed magnetic bearing structure supports the rotor by the repulsive forces of permanent magnets, and has a two degree of freedom for rotor position when the rotor is rotating. Permanent magnets and coils in the stator allow for a two degree of freedom control of the rotor position and torque generation by reacting with permanent magnets of the rotor. The executed gyro actuator has a number of poles such as five-phase permanent magnet motors and 10 stator coils for the rotor position control. In this study, the verification of the stability of the magnetic bearing was conducted using the equation of motion when the rotor was rotating, and the coil current commutation method for the position control and torque generation was studied. As a result, the feasibility of the proposed structure and control was verified by simulations of Finite Element Method (FEM) and experiments using the executed gyro actuator.