• Title/Summary/Keyword: structure borne

Search Result 290, Processing Time 0.028 seconds

The Analysis of Vehicle Interior Noise by the Powertrain, and Measurement of Noise Trasnsfer Function using Vibro-Acoustic Reciprocity (파워트레인에 의한 차량 실내 소음 특성 및 전달 함수 측정)

  • Kim, Sung-Jong;Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.501-506
    • /
    • 2007
  • Structure-borne noise is the interior noise that results from the low frequency vibrational energy transmitted through those body and joint parts. The relation between the excitation of powertrain and resultant interior sound must be analyzed in order to identify and predict the structure borne noise. The method of acoustic source excitation is preferred than the method of mechanical force excitation to measure the NTF(noise transfer function). Because acoustical method is more convenient and reliable. In this paper, to analysis and identify vehicle interior noise by powertrain is performed, and the vibro-acoustic transfer function is extracted from experimental measurement. These are important step of TPA(transfer path analysis) to identify effect of interior noise resulted from powertrain running excitation.

  • PDF

SBN(Structure-borne Noise) Reduction of Resiliently Mounted Machinery and Effect of Foundation Impedance (탄성지지된 장비의 고체음저감 및 받침대 임피던스효과)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kang, Hyun-Ju;Kim, Bong-Ki;Kim, Sang-Ryul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.423-426
    • /
    • 2007
  • In this paper, vibration reduction of resiliently mounted machinery and effect of the foundation impedance is studied. SBN (Structure-borne noise) reduction through the mount is analyzed by assuming that the system is modeled as a mass-spring system, while the impedance of the floor is included in the prediction. The comparison of the SBN difference through the mount between predictions and measurements show that the slopes are similar in the case of single-mount system, while the measurements differs significantly from the predictions in the case of the double-resilient system.

  • PDF

A Suggestion of Method to reduce the Radiation Efficiency of Dash Panel of a Passenger Car (승용차 대시부의 구조 방사 효율 저감 방법 제안)

  • Kim, Young-Ki;Kang, Yeon-June;Ahn, Ok-Kyun;Ki, Ji-Hyeon;Park, Yoon-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.332.1-332
    • /
    • 2002
  • The study was performed as reduction method using finite and boundary element analysis on structure-borne noise radiated by dash panel of a real car. The radiation efficiency is used to estimate sound noise of dash panel. Curvature and edges of dash panel have effect on radiation efficiency. The simulation results of dash panel was ensured by comparison between experimental results and simulation results of a simple rectangular plate. (omitted)

  • PDF

Damping Layout Optimization to Reduce Structure-borne Noises in a Two-Dimensional Cavity (이차원 공동의 구조기인소음 저감을 위한 제진재의 최적배치)

  • Lee Doo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.805-812
    • /
    • 2006
  • An optimization formulation is proposed to minimize sound pressures in a two-dimensional cavity by controlling the attachment area of unconstrained damping materials. For the analysis of structural-acoustic systems, a hybrid approach that uses finite elements for structures and boundary elements for cavity is adopted. Four-parameter fractional derivative model is used to accurately represent dynamic characteristics oJ the viscoelastic materials with frequency and temperature. Optimal layouts of the unconstrained damping layer on structural wall of cavity are identified according to temperatures and the amount of damping material by using a numerical search algorithm.

  • PDF

Characteristics of Wave Transmission Through Various functions in Coupled Beams (연성보에서 연결 구조에 따른 파동 전달 특성)

  • 이병철;길현권;이효행;이용현;홍석윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.468-473
    • /
    • 2004
  • The objective of this paper is to analyze the characteristics of wave transmission through various junctions in coupled beams. The in-plane vibration as veil as the out-of-plane vibration are generated due to the wave conversion at the junctions in the coupled beams. The out-of-plane vibration is associated with propagation of out-of-plane waves (flexural waves). The in-plane vibration is associated with propagation of in-plane waves (longitudinal and torsional waves). In order to effectively reduce vibration and structure-borne noise, it is necessary to understand the characteristics of wave conversion at various junctions in the coupled structures. The numerical results in this paper have showed the characteristics of wave transmission through various junctions in coupled beams. Those could be helpful to designer to develop the idea to reduce vibration and structure-borne noise.

  • PDF

A Study on Noise Identification of Indoor Air-conditioner Using Experimental Methods (실험적 방법을 통한 에어컨 실내기의 소음원 검출에 관한 연구)

  • 이성진;오재응;이정윤;강태호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.87-87
    • /
    • 2004
  • An air-conditioner has various noise sources such as a fan noise, a motor noise, and a vibration induced noise. To reduce these noise effectively, noise sources must be identified. Especially in this paper, the structure borne sound radiated from the motor bracket of the indoor air-conditioner is considered. To do this, the operational deflection shape, which is used for understanding of the behavior of the motor bracket at a particular frequency, is obtained and compared with the sound intensity, which is used for the noise identification. Through this study, the noise sources of indoor air-conditioner are defined and the effective noise reduction method is proposed.

  • PDF

A Study on Mount Performance for Structure-Borne Noise Reduction in Resiliently Mounted System (탄성지지된 시스템의 마운트 고체음저감 성능에 관한 연구)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kim, Bong-Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2E
    • /
    • pp.50-55
    • /
    • 2007
  • SBN (Structure-Borne Noise) reduction in resiliently mounted machineries are predicted by using mass-spring model and wave model. In mass-spring model, mount is modeled as a spring, while in wave model, mount is considered as an equivalent elastic rod for taking account into longitudinal wave propagation. The predictions for SBN reduction through mounts are compared to the measurements for four different pumps. It is found that the mass-spring model is valid only in low frequency range below few hundred Hz, while for high frequency ranges longitudinal wave propagation in the mount must be considered to explain the measurements. It is also shown that impedance of the floor slightly affects low frequency behaviour in mass-spring and wave model below 50 Hz - 80 Hz, so that in engineering practice the effect of floor impedance may be neglected in computing mount performance.

A Study on Structure-Borne Noise Reduction for Resiliently Mounted Pumps for Ship (탄성지지된 박용 펌프의 고체음저감에 관한 연구)

  • Kim, Hyun-Sil;Kang, Hyun-Ju;Kim, Bong-Ki;Kim, Sang-Ryul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.488-495
    • /
    • 2007
  • In this paper, SBN (Structure-Borne Noise) reduction of resiliently mounted machinery and effect of the foundation impedance on mount performance is studied. SBN reduction through the mount is analyzed by using two theoretical models; mass-spring model and wave model, in which longitudinal wave propagation is included. It is found that floor impedance greatly affects SBN reduction through lower mount, while it is almost negligible to SBN reduction through upper mount. Comparisons between measurement and predictions shows that the mass-spring model is valid only in low frequency range below few hundred Hz, while for high frequency ranges longitudinal wave propagation in the mount must be considered.

Reduction of Structure-borne Noises in a Two-Dimensional Cavity using Optimal Treatment of Damping Materials (제진재의 최적배치를 통한 이차원 공동의 구조기인소음 저감)

  • Lee, Doo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1581-1587
    • /
    • 2006
  • An optimization formulation is proposed to minimize sound pressures in a two-dimensional cavity by controlling the attachment area of viscoelastic unconstrained damping materials. For the analysis of structural- acoustic systems, a hybrid approach that uses finite elements for structures and boundary elements for cavity is adopted. Four-parameter fractional derivative model is used to accurately represent dynamic characteristics of the viscoelastic materials with respect to frequency and temperature. Optimal layouts of the unconstrained damping layer on structural wall of cavity are identified according to temperatures and the amount of damping material by using a numerical search algorithm.