• Title/Summary/Keyword: structural understanding

Search Result 1,339, Processing Time 0.029 seconds

Phenomenological Approach to Stress Experiences in Obese Teenagers (비만 청소년의 스트레스 경험에 관한 현상학적 접근)

  • Kim, Lee-Sun
    • Journal of the Korean Society of School Health
    • /
    • v.12 no.2
    • /
    • pp.243-262
    • /
    • 1999
  • Today, obesity is not recognized as a disease itself but is known to be the indirect cause of much chronic illness. Obesity has an impact on psychological disorders including severe inferiority, damage of body self-image, low self-esteem, personality disorders. The results in an increase of the mortality rate. Therefore, this study attempts to discover and evaluate stressful experience in obese teenagers. For this study, 21 girl students and 19 boy students in Pusan middle or high school located were selected. The data were collected from March to May at 1999. A tape-recorder was used under the permission of the subjects to prevent the loss of spoken information and communication. This study consisted of 563 reponses from girls and 461 responses from boys which were then classified with descriptive expressions and priority classifications. The results generated 72 common elements in girls and 54 common elements in boys. From these elements 24 syntheses of hypothetical definitions and 8 identifications of the structural definitions in both girls and boys were developed. The structural and hypothetical definitions were as follows: The analysis of the data was made through a phenomenological analytic method suggested by Van kamm, which is as follows: 1. Maladjustment to school life; lack of understanding of the teacher, insufficient exercise ability, and a feeling of burden in attending the school obesity program. 2. Conflict in family relationships; lack of understanding from the family, a feeling of alienation. 3. Conflict in friend relationships; lack of understanding among friends, constant comparisons in appearance and body with friends (in girls) and estrangement from friends (in boys). 4. Conflict in acquaintance of the opposite sex; hoping to meet the opposite sex, lack of understanding of boy friends (in girls), feelings of pain, feelings of anxiety (in girls) feelings of burden (in girls) feelings of envy (in boys). 5. Negative body image: shape of body; feelings of pain; feelings of powerlessness; feelings of discomfort, and reception; emotional disorders (in boys), and change of personality (in boys). 6. Health disorder: Physical and psychological discomfort. 7. Feelings of burden in weight control; negative experiences in weight control, interference with family and friends, the difficulty in diet therapy, feelings of burden in exercise (in girls), to be teased by the public through mass media (in boys).

  • PDF

Investigation of ship collision with floating pier structures

  • Chegenizadeh, Amin;Ghadimi, Behzad;Nikraz, Hamid
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.319-327
    • /
    • 2014
  • This study investigated the collision of ships withfloating pier structures. The nature of the collision phenomenon is complex, and the understanding of it has developed through the modelling of offshore structures. ABAQUS software was used to investigate the collision phenomenon. The interaction between the ship and structural system was modelled, and the stress distribution both at thetime of collision and afterwardswasobserved and modelled. The strain energy absorption by different structural partswas calculated and comparisonswere made.

Dynamic Instability of Arch Structures Considering Geometric Nonlinearity by Sinusoidal Harmonic Excitation (기하학적 비선형을 고려한 아치 구조물의 정현형 조화하중에 의한 동적 불안정 현상에 관한 연구)

  • 윤태영;김승덕
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.69-76
    • /
    • 2003
  • We investigate the fundamental mechanisms of the dynamic instability when the sinusoidal shaped arch structures subjected to sinusoidal harmonic excitation with pin-ends. In nonlinear dynamics, examining the characteristics of attractor on the phase plane and investigating the dynamic buckling process are very important thing for understanding why unstable phenomena are sensitively originated by various initial conditions. In this study, the direct and the indirect snap-buckling of shallow arches considering geometrical nonlinearity are investigated numerically and compared with the step excitation critical load.

  • PDF

A Study on the Dynamic Instability of Shallow Sinusoidal Arches (얕은 정현형(正弦型) 아치의 동적불안정에 관한 연구)

  • 김승덕;박지윤;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.233-242
    • /
    • 1998
  • Many papers which deal with the dynamic instability for shell-like structures under the step load have been published, but there are few papers which treat the essential phenomenon of the dynamic buckling using the phase plane for investigating occurrence of chaos. Dynamic buckling process in the phase plane is a very important thing for understanding why unstable phenomena are sensitively originated in nonlinear dynamics by various initial conditions. In this study, the direct and the indirect snap-buckling of shallow arches considering geometrical nonlinearity are investigated numerically and compared with the static critical load.

  • PDF

Kinetics of Structural Transitions in Surfactant Solution (계면활성제 수용액에 있어 구조변화에 따른 동력학적 고찰)

  • Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.161-166
    • /
    • 2001
  • While the equilibrium behaviour of surfactant solution is well studied, the understanding of the kinetics and pathways of structural transition under nonequilibrium conditions is only begining to develop. Attention has recently been directed mainly towards micellar kinectics, transitions between micellar and lamellar phases, vesicle fusion, and phases separation in microemulsions. This progress has profited greatly from developments that have taken place in various techniques and instruments.

Investigation of ship collision with floating pier structures

  • Chegenizadeh, Amin;Ghadimi, Behzad;Nikraz, Hamid
    • Interaction and multiscale mechanics
    • /
    • v.7 no.1
    • /
    • pp.563-571
    • /
    • 2014
  • This study investigated the collision of ships withfloating pier structures. The nature of the collision phenomenon is complex, and the understanding of it has developed through the modelling of offshore structures. ABAQUS software was used to investigate the collision phenomenon. The interaction between the ship and structural system was modelled, and the stress distribution both at thetime of collision and afterwardswasobserved and modelled. The strain energy absorption by different structural partswas calculated and comparisonswere made.

Non-linear incidental dynamics of frame structures

  • Radoicic, Goran N.;Jovanovic, Miomir Lj.;Marinkovic, Dragan Z.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1193-1208
    • /
    • 2014
  • A simulation of failures on responsible elements is only one form of the extreme structural behavior analysis. By understanding the dynamic behavior in incidental situations, it is possible to make a special structural design from the point of the largest axial force, stress and redundancy. The numerical realization of one such simulation analysis was performed using FEM in this paper. The boundary parameters of transient analysis, such as overall structural damping coefficient, load accelerations, time of load fall and internal forces in the responsible structural elements, were determined on the basis of the dynamic experimental parameters. The structure eigenfrequencies were determined in modal analysis. In the study, the basic incidental models were set. The models were identified by many years of monitoring incidental situations and the most frequent human errors in work with heavy structures. The combined load models of structure are defined in the paper since the incidents simply arise as consequences of cumulative errors and failures. A feature of a combined model is that the single incident causes the next incident (consecutive timing) as well as that other simple dynamic actions are simultaneous. The structure was observed in three typical load positions taken from the crane passport (range-load). The obtained dynamic responses indicate the degree of structural sensitivity depending on the character of incident. The dynamic coefficient KD was adopted as a parameter for the evaluation of structural sensitivity.

Behaviour and design of Grade 10.9 high-strength bolts under combined actions

  • Li, Dongxu;Uy, Brian;Wang, Jia;Song, Yuchen
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.327-341
    • /
    • 2020
  • The use of high-strength steel and concrete in the construction industry has been gaining increasing attention over the past few decades. With it comes the need to utilise high-strength structural bolts to ensure the design load to be transferred safely through joint regions, where the space is limited due to the reduced structural dimensions. However, research on the behaviour of high-strength structural bolts under various loading combinations is still insufficient. Most of the current design specifications concerning high-strength structural bolts were established based on a very limited set of experimental results. Moreover, as experimental programs normally include limited design parameters for investigation, finite element analysis has become one of the effective methods to assist the understanding of the behaviour of structural components. An accurate and simple full-range stress-strain model for high-strength structural bolts under different loading combinations was therefore developed, where the effects of bolt fracture was included. The ultimate strength capacities of various structural bolts obtained from the present experimental program were compared with the existing design provisions. Furthermore, design recommendations concerning the pure shear and tension, as well as combined shear and tension resistance of Grade 10.9 high-strength structural bolts were provided.

Numerical investigation on beams prestressed with FRP

  • Pisani, Marco A.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.349-364
    • /
    • 2000
  • This paper aims to make a contribution to understanding which methods apply for structural analysis of beams prestressed with FRP cables. A parametric non-linear numerical analysis of simply supported beams has been performed. In this analysis the shape of the cross-section, the strength of concrete, the material adopted for the cables (steel, GFRP, CFRP), the prestressing system (bonded or unbonded prestressing) and the degree of prestressing were changed to collect a broad range of data which, the author contends, should cover the most frequent types of common practice. The output data themselves and their comparison allow us to suggest some rules that could be adopted when dealing with beams prestressed with these innovatory materials that have an elastic-brittle behaviour.

Studies into a high performance composite connection for high-rise buildings

  • Lou, G.B.;Wang, A.J.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.789-809
    • /
    • 2015
  • This paper presents experimental and numerical studies into the structural behavior of a high performance corbel type composite connection adopted in Raffles City of Hangzhou, China. Physical tests under both monotonic and quasi-static cyclic loads were conducted to investigate the load carrying capacities and deformation characteristics of this new type of composite connection. A variety of structural responses are examined in detail, including load-deformation characteristics, the development of sectional direct and shear strains, and the history of cumulative plastic deformation and energy. A three-dimensional finite element model built up with solid elements was also proposed for the verification against test results. The studies demonstrate the high rigidity, strength and rotation capacities of the corbel type composite connections, and give detailed structural understanding for engineering design and practice. Structural engineers are encouraged to adopt the proposed corbel type composite connections in mega high-rise buildings to achieve an economical and buildable and architectural friendly engineering solution.