• 제목/요약/키워드: structural understanding

검색결과 1,350건 처리시간 0.025초

예술 작품의 진리문제에 대한 존재론적 이해 - H. G. Gadamer의 철학적 해석학을 중심으로 - (The ontological understanding in the matter of truth in a work of art -on the subject of philosophical hermeneutics of H. G. Gadamer)

  • 김진엽
    • 조형예술학연구
    • /
    • 제8권
    • /
    • pp.95-127
    • /
    • 2005
  • It's a matter of ontology rather than that of cognition and methodology to discuss a work of art in Gadamer's philosophy. In addition, he emphasizes the cognitive aspect of a work of art instead of comparing forms and contents of them. For that reason, he excludes aesthetic consciousness derived from Kant first and then makes away with Schiller's theory of aesthetic education. For Gadamer, the concept of truth does not mean accord or correspondence. It would rather be an encounter. This encounter is not axed on a specific time, but a continuous and historical one. Basically. a work of art guarantees this kind of an encounter. This encounter is not based on mutual agreement through an objective standard but on recognition with mutual understanding. Therefore, prejudice or tradition should be acknowledged and respected instead of being excluded. We have only to minimize difference between them through conversation. Gadamer's ontology of a work of art is based on such a ground. The function of a work of art is not only simple satisfaction of aesthetic senses but an object of interpretation, that is, a text by presenting a ground of truth through an agreement of situation. This text reveals its meaning in the situation of author-text-reader. The appearance of this meaning is nothing but the birth of truth. Symbol-allegory and classicism show how to express this kind of truth in a work of art. It is true that Gadamer's philosophical hermeneutics cannot be easily applied to interpret a concrete work of art because it just lays emphasis on the process of 'understanding' instead of a detailed analysis on an individual work. For that reason, he was criticized by some people because of this subjectivity of understanding. However, it's meaning could be changed according to the viewpoint on a work of art. There appears various structural approaches on a work of art in contemporary theory of art. Gadamer just asks the basis of such approaches instead of criticizing a specific one Therefore, a practical approach on individual work should be made separately and hermeneutics enriches the meaning of open-ending of each work of art.

  • PDF

Validating the Structural Behavior and Response of Burj Khalifa: Synopsis of the Full Scale Structural Health Monitoring Programs

  • Abdelrazaq, Ahmad
    • 국제초고층학회논문집
    • /
    • 제1권1호
    • /
    • pp.37-51
    • /
    • 2012
  • New generation of tall and complex buildings systems are now introduced that are reflective of the latest development in materials, design, sustainability, construction, and IT technologies. While the complexity in design is being overcome by the availability and advances in structural analysis tools and readily advanced software, the design of these buildings are still reliant on minimum code requirements that yet to be validated in full scale. The involvement of the author in the design and construction planning of Burj Khalifa since its inception until its completion prompted the author to conceptually develop an extensive survey and real-time structural health monitoring program to validate all the fundamental assumptions mad for the design and construction planning of the tower. The Burj Khalifa Project is the tallest structure ever built by man; the tower is 828 meters tall and comprises of 162 floors above grade and 3 basement levels. Early integration of aerodynamic shaping and wind engineering played a major role in the architectural massing and design of this multi-use tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria established at the onset of the project design. Understanding the structural and foundation system behaviors of the tower are the key fundamental drivers for the development and execution of a state-of-the-art survey and structural health monitoring (SHM) programs. Therefore, the focus of this paper is to discuss the execution of the survey and real-time structural health monitoring programs to confirm the structural behavioral response of the tower during construction stage and during its service life; the monitoring programs included 1) monitoring the tower's foundation system, 2) monitoring the foundation settlement, 3) measuring the strains of the tower vertical elements, 4) measuring the wall and column vertical shortening due to elastic, shrinkage and creep effects, 5) measuring the lateral displacement of the tower under its own gravity loads (including asymmetrical effects) resulting from immediate elastic and long term creep effects, 6) measuring the building lateral movements and dynamic characteristic in real time during construction, 7) measuring the building displacements, accelerations, dynamic characteristics, and structural behavior in real time under building permanent conditions, 8) and monitoring the Pinnacle dynamic behavior and fatigue characteristics. This extensive SHM program has resulted in extensive insight into the structural response of the tower, allowed control the construction process, allowed for the evaluation of the structural response in effective and immediate manner and it allowed for immediate correlation between the measured and the predicted behavior. The survey and SHM programs developed for Burj Khalifa will with no doubt pioneer the use of new survey techniques and the execution of new SHM program concepts as part of the fundamental design of building structures. Moreover, this survey and SHM programs will be benchmarked as a model for the development of future generation of SHM programs for all critical and essential facilities, however, but with much improved devices and technologies, which are now being considered by the author for another tall and complex building development, that is presently under construction.

서비스 종사자의 개인-직무적합성이 감정지능 및 직무만족에 미치는 영향에 관한 연구 (Study on Effects of Person-Job Fit of High Touching Service Employees on Emotional Intelligence and Job Satisfaction)

  • 김유경
    • 유통과학연구
    • /
    • 제14권4호
    • /
    • pp.81-92
    • /
    • 2016
  • Purpose - In recent years, management scholars have expressed growing interest in the concept of person-Job fit because of having many benefits for employees' attitudes and behaviors. The related research is needed to determine what specific types of fit are related to each other, and to get important individual outcomes. Person-job fit of employees in service organization plays an important role in company as well as person in service industry. Person-job fit, representing the consistency between person (service provider) and job (service provided to the customers), gives significant and positive effects on the attitude and behavior of service provider. On the basis of the study background, the purpose of this study is as follows. First, we would like to examine the effects of person-job fit of service provider on their emotional intelligence. Emotional intelligence is divided into four sub-factors such as self-understanding, understanding others, emotional utilization, and emotional regulation. Second, we would like to identify the relationships between job satisfaction and sub-factors such as self-understanding, understanding others, emotional utilization, and emotional regulation. Research design, data, and methodology - We performed structural equation model using Spss 18.0 and Amos 20.0 in order to verify the hypotheses. Subjects were golf service assistants who were high-touching service with high degree in interaction and long contact time with customers. 178 out of the total 200 surveys were used in evaluation from helpers of golf service working as full-time service provider after selecting two locations of golf course located near Busan. From the evaluation of reliability and validity with variables used in this research, they satisfied and confirmed certain standard. Results - The results are as follows. First, as the results of identifying the relationships between person-job fit and emotional intelligence of service provider, person-job fit did not have positive and significant effect on self-understanding. On the other hand, it affected positively and significantly other factors in emotional intelligence such as emotion to others, emotional utilization, and emotional regulation. Second, as the results of identifying the relationship between emotional intelligence and job satisfaction, sub-factors in emotional intelligence such as emotion to others, emotional utilization, and emotional regulation except self-emotion affected significantly and positively job satisfaction. However, self-emotion did not have significant and positive effects on job satisfaction. Conclusion - These results will be valuable and used for service providers. In addition, many service providers will recognize that person-job fit is very important to get a job. This research has a purpose on the assumption that appropriateness between individual and task in service industry shall act as major influence in emotional intelligence of service provider. Recognitive ability of service provider is also very important per characteristics of service, but emotional intelligence that interacts and connected directly with most customers can be a very meaningful factor as well. Emotional intelligence allows people to recognize, understand, and empathize the emotion of customers shall be a positive reinforcement for customers to evaluate the service ultimately.

건축과 패션의 비교를 통해 고찰한 구조적 단순성 (Structural Simplicity Examined from a Perspective of the Comparison of Architecture and Fashion)

  • 박선지
    • 한국의상디자인학회지
    • /
    • 제17권1호
    • /
    • pp.1-11
    • /
    • 2015
  • Fashion and architecture essentially have structure to build space for a form of three dimensions. This study defines the form in which structure in itself becomes design as structural simplicity and investigates design paying attention to only structure. It is one of efforts in order to display new design required in the age of a flood of design and it is considered that before developing design through the fusion of architecture and fashion, understanding structure which is the most fundamental element to constitute the form of the two genres will be a groundwork to develop proper fusion design. This study elucidates similarities between architecture and fashion through literature review and investigates structure meant in architecture and fashion, and after that, collects corresponding examples through related literature and fashion information site. For structural simplicity in architecture, structure of a building in itself is a form and decoration at the same time, and it appears as a form of minimizing other elements and stressing the structure only. Structure in fashion means composition line which essentially exists to embody two dimensional materials onto three dimensional human body. As elements of geometric lines are creatively expressed by a designer in order to constitute three dimensional form from structural simplicity, they connote a variety of functions and exert decorative effects as well. And the shape of structure expressed like this is employed as a tool to show off the designer's techniques.

  • PDF

초 . 중학생들의 과학탐구능력에 미치는 인지적, 정의적 특성에 대한 공변량 구조분석 (Covariance Structure Analysis of Science Process Skills Affected by Students' Cognitive and Affective Characteristics in Elementary and Middle School)

  • 임청환;김승화;양일호
    • 한국과학교육학회지
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 1997
  • The purpose of this study was to analyze the structural model of causal effects of students' variables on science process skills. Student characteristics investigated in the study included attitude related to the science, logical thinking ability, scientific experiences, cognitive style. Covariance structural modeling procedures were used to test causal inferences about hypothesized relationships. The sample consisted of 319 6th grade students and 321 8th grade students in Seoul City, Korea. Five instruments were used in the study, TSPS(test of science process skills), GALT(group assessment of logical thinking), CEFT(children embedded figures test), questionnaire of attitude related to the science, questionnaire of scientific experience. For statistical analysis, the study adopted the structural equation modeling with LlSREL, a computer statistical program developed by J reskog and S rbom. Major findings of the study are as follows:1) Logical thinking ability has a most strong direct effect on science process skills. 2) The structural coefficient of scientific experience influence on attitude related to the science has the greatest direct one than the others in the covariance structural model. According to the results of this study, it is very importance that various scientific experiences, particularly hands-on activity, should be offer to students to improve science process skills. Also, understanding the relationships of student variable to science process skills will be helpful to decision making on the part of curriculum developers, science teachers and researchers.

  • PDF

Variability of measured modal frequencies of a cable-stayed bridge under different wind conditions

  • Ni, Y.Q.;Ko, J.M.;Hua, X.G.;Zhou, H.F.
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.341-356
    • /
    • 2007
  • A good understanding of normal modal variability of civil structures due to varying environmental conditions such as temperature and wind is important for reliable performance of vibration-based damage detection methods. This paper addresses the quantification of wind-induced modal variability of a cable-stayed bridge making use of one-year monitoring data. In order to discriminate the wind-induced modal variability from the temperature-induced modal variability, the one-year monitoring data are divided into two sets: the first set includes the data obtained under weak wind conditions (hourly-average wind speed less than 2 m/s) during all four seasons, and the second set includes the data obtained under both weak and strong (typhoon) wind conditions during the summer only. The measured modal frequencies and temperatures of the bridge obtained from the first set of data are used to formulate temperature-frequency correlation models by means of artificial neural network technique. Before the second set of data is utilized to quantify the wind-induced modal variability, the effect of temperature on the measured modal frequencies is first eliminated by normalizing these modal frequencies to a reference temperature with the use of the temperature-frequency correlation models. Then the wind-induced modal variability is quantitatively evaluated by correlating the normalized modal frequencies for each mode with the wind speed measurement data. It is revealed that in contrast to the dependence of modal frequencies on temperature, there is no explicit correlation between the modal frequencies and wind intensity. For most of the measured modes, the modal frequencies exhibit a slightly increasing trend with the increase of wind speed in statistical sense. The relative variation of the modal frequencies arising from wind effect (with the maximum hourly-average wind speed up to 17.6 m/s) is estimated to range from 1.61% to 7.87% for the measured 8 modes of the bridge, being notably less than the modal variability caused by temperature effect.

Three dimensional modelling of ancient colonnade structural systems subjected to harmonic and seismic loading

  • Sarhosis, V.;Asteris, P.G.;Mohebkhah, A.;Xiao, J.;Wang, T.
    • Structural Engineering and Mechanics
    • /
    • 제60권4호
    • /
    • pp.633-653
    • /
    • 2016
  • One of the major threats to the stability of classical columns and colonnades are earthquakes. The behavior of columns under high seismic excitation loads is non-linear and complex since rocking, wobbling and sliding failure modes can occur. Therefore, three dimensional simulation approaches are essential to investigate the in-plane and out-of-plane response of such structures during harmonic and seismic loading excitations. Using a software based on the Distinct Element Method (DEM) of analysis, a three dimensional numerical study has been performed to investigate the parameters affecting the seismic behaviour of colonnades' structural systems. A typical section of the two-storey colonnade of the Forum in Pompeii has been modelled and studied parametrically, in order to identify the main factors affecting the stability and to improve our understanding of the earthquake behaviour of such structures. The model is then used to compare the results between 2D and 3D simulations emphasizing the different response for the selected earthquake records. From the results analysis, it was found that the high-frequency motion requires large base acceleration amplitude to lead to the collapse of the colonnade in a shear-slip mode between the drums. However, low-frequency harmonic excitations are more prominent to cause structural collapse of the two-storey colonnade than the high-frequency ones with predominant rocking failure mode. Finally, the 2D analysis found to be unconservative since underestimates the displacement demands of the colonnade system when compared with the 3D analysis.

Analytical and experimental research on wind-induced vibration in high-rise buildings with tuned liquid column dampers

  • Liu, Ming-Yi;Chiang, Wei-Ling;Chu, Chia-Ren;Lin, Shih-Sheng
    • Wind and Structures
    • /
    • 제6권1호
    • /
    • pp.71-90
    • /
    • 2003
  • In recent years, high-strength, light-weight materials have been widely used in the construction of high-rise buildings. Such structures generally have flexible, low-damping characteristics. Consequently, wind-induced oscillation greatly affects the structural safety and the comfort of the building's occupants. In this research, wind tunnel experiments were carried out to study the wind-induced vibration of a building with a tuned liquid column damper (TLCD). Then, a model for predicting the aerodynamic response in the across-wind direction was generated. Finally, a computing procedure was developed for the analytical modeling of the structural oscillation in a building with a TLCD under the wind load. The model agrees substantially with the experimental results. Therefore, it may be used to accurately calculate the structural response. Results from this investigation show that the TLCD is more advantageous for reducing the across-wind vibration than the along-wind oscillation. When the across-wind aerodynamic effects are considered, the TLCD more effectively controls the aerodynamic response. Moreover, it is also more useful in suppressing the acceleration than the displacement in biaxial directions. As s result, TLCDs are effective devices for reducing the wind-induced vibration in buildings. Parametric studies have also been conducted to evaluate the effectiveness of the TLCD in suppressing the structural oscillation. This study may help engineers to more correctly predict the aerodynamic response of high-rise buildings as well as select the most appropriate TLCDs for reducing the structural vibration under the wind load. It may also improve the understanding of wind-structure interactions and wind resistant designs for high-rise buildings.

Structural Features of β2 Adrenergic Receptor: Crystal Structures and Beyond

  • Bang, Injin;Choi, Hee-Jung
    • Molecules and Cells
    • /
    • 제38권2호
    • /
    • pp.105-111
    • /
    • 2015
  • The beta2-adrenergic receptor (${\beta}2AR$) belongs to the G protein coupled receptor (GPCR) family, which is the largest family of cell surface receptors in humans. Extra attention has been focused on the human GPCRs because they have been studied as important protein targets for pharmaceutical drug development. In fact, approximately 40% of marketed drugs directly work on GPCRs. GPCRs respond to various extracellular stimuli, such as sensory signals, neurotransmitters, chemokines, and hormones, to induce structural changes at the cytoplasmic surface, activating downstream signaling pathways, primarily through interactions with heterotrimeric G proteins or through G-protein independent pathways, such as arrestin. Most GPCRs, except for rhodhopsin, which contains covalently linked 11 cis-retinal, bind to diffusible ligands, having various conformational states between inactive and active structures. The first human GPCR structure was determined using an inverse agonist bound ${\beta}2AR$ in 2007 and since then, more than 20 distinct GPCR structures have been solved. However, most GPCR structures were solved as inactive forms, and an agonist bound fully active structure is still hard to obtain. In a structural point of view, ${\beta}2AR$ is relatively well studied since its fully active structure as a complex with G protein as well as several inactive structures are available. The structural comparison of inactive and active states gives an important clue in understanding the activation mechanism of ${\beta}2AR$. In this review, structural features of inactive and active states of ${\beta}2AR$, the interaction of ${\beta}2AR$ with heterotrimeric G protein, and the comparison with ${\beta}1AR$ will be discussed.

조립식 교량의 가로보 연결에 관한 실험적연구 (An Experomental Study on the Connection of Diaphragm in Modular Bridge)

  • 이현호;이상승;조두용;김태완;박선규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권2호
    • /
    • pp.31-39
    • /
    • 2012
  • 최근 교량의 신설 및 교체 공사 중 요구되고 있는 교통 혼잡의 최소화, 환경 영향의 최소화, 공사기간의 단축, 품질과 시공성 향상 등을 위해 조립식 교량 시스템의 적용이 시대적 요구로 대두되고 있다. 조립식 교량 시공 중 거더 간의 연결 시 발생할 수 있는 전도 및 추락 사고는 교량 시스템에 적합한 가로보의 사용으로 해결이 가능할 것으로 보여 진다. 본 연구에서는 가로보의 구조적 특성을 조사하고 국내 외 적용현황을 분석하여 조립식 PSC T형 거더 교량에 접합한 가로보 대안을 설정하여 가로보 연결부의 특성을 규명하고자 실험체를 제작하여 정적 하중 재하실험을 실시하였다. 정적 하중 실험을 통하여 실험체의 접합부의 거동과 하중분배에 대해 살피고 실험결과를 비교, 분석하였고 실험을 통한 구조 성능의 결과 치, 시공성을 고려하여 조립식 PSC T형 거더 교량에 접합한 가로보 대안을 제안 하였다.