• 제목/요약/키워드: structural understanding

검색결과 1,339건 처리시간 0.026초

A Comparison between Francesco Borromini's Architectural and Structural Design - Focusing on the Churches of San Carlo alle Quattro Fontane and Sant'Ivo alla Sapienza -

  • Dacarro, Fabio
    • 한국실내디자인학회논문집
    • /
    • 제25권5호
    • /
    • pp.82-92
    • /
    • 2016
  • This study aims to contribute to better understanding of the Baroque architect Francesco Borromini, and, as a consequence, of the Baroque period itself. Recognizing that historical studies have focused mainly on the architectural (i.e., formal) aspects of Borromini's work and largely neglected the technical (i.e., structural) issues, and that the relationship between the architectural and structural worlds in Borromini's activity has consequently never been studied in depth, this research set as its objective the study of this relationship, and has developed a comparative analysis of Borromini's attitude toward architectural problems and questions of tectonics. The investigation has been conducted on two meaningful case-studies in Rome: San Carlo alle Quattro Fontane and Sant'Ivo alla Sapienza. The analysis has highlighted a strong dichotomy between Borromini as an architectural designer and Borromini as a structural designer. While Borromini's design is experimental, innovative, and nonconformist, his structures are cautious, tested, and validated by trustworthy tradition. His unprejudiced use of constructive solutions from different historical periods, regions, and cultural areas allows the definition of his approach to tectonics as "constructive eclecticism." The analysis has also highlighted the independence between the architectural and structural aspects of his work, as the two do not interfere with or limit each other. The dichotomy between form and structure in Borromini's work may reflect the "theatrical" tendency of Baroque culture, where what is shown on the face is often different from what is hidden behind.

Development and application of construction monitoring system for Shanghai Tower

  • Li, Han;Zhang, Qi-Lin;Yang, Bin;Lu, Jia;Hu, Jia
    • Smart Structures and Systems
    • /
    • 제15권4호
    • /
    • pp.1019-1039
    • /
    • 2015
  • Shanghai Tower is a composite structure building with a height of 632 m. In order to verify the structural properties and behaviors in construction and operation, a structural health monitoring project was conducted by Tongji University. The monitoring system includes sensor system, data acquisition system and a monitoring software system. Focusing on the health monitoring in construction, this paper introduced the monitoring parameters in construction, the data acquisition strategy and an integration structural health monitoring (SHM) software. The integration software - Structural Monitoring/ Analysis/ Evaluation System (SMAE) is designed based on integration and modular design idea, which includes on-line data acquisition, finite elements and dynamic property analysis functions. With the integration and modular design idea, this SHM system can realize the data exchange and results comparison from on-site monitoring and FEM effectively. The analysis of the monitoring data collected during the process of construction shows that the system works stably, realize data acquirement and analysis effectively, and also provides measured basis for understanding the structural state of the construction. Meanwhile, references are provided for the future automates construction monitoring and implementation of high-rise building structures.

The Role of Structural Holes in Uncertain Environments in Channel Relationships

  • Kim, Min-Jung
    • 유통과학연구
    • /
    • 제16권6호
    • /
    • pp.25-35
    • /
    • 2018
  • Purpose - Although marketing networks are crucial competitive advantage in terms of firm's new information and resource acquisition ability, their impact on new product development performance remains vague, especially under environmental uncertainty. The principal objective of this research is to provide a better understanding of effects of technological uncertainty and volume uncertainty on first tier supplier's perceived performance of new product development under conditions reflecting varying levels of structural holes. Specifically, this research examines the moderating effect of structural holes on the relationship between environmental uncertainty and new product development performance. Research design, data, and methodology - To test the hypotheses, a questionnaire survey was conducted with a Korean engineering firm's major first-tier suppliers in the context of internal network entities, manufacturer-supplier-subsupplier relationships, and to verify the proposed hypotheses, structural equation modeling was established. Construct measures were based on existing measures and previous research. Results - The survey results indicate that technological uncertainty and volume uncertainty differentially affect NPD performance under conditions of high and low structural holes. Conclusions - This study offer some theoretical and practical implications among distribution channel members, especially, this study suggests that interfirm networks have critical competitive advantage in uncertain environments. The distinctiveness of engineering industry might limit the generalizability of the results. Thus, future research should consider a wider range of industries.

Aseismic protection of historical structures using modern retrofitting techniques

  • Syrmakezis, C.A.;Antonopoulos, A.K.;Mavrouli, O.A.
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.233-245
    • /
    • 2008
  • For historical masonry structures existing in the Mediterranean area, structural strengthening is of primary importance due to the continuous earthquake threat that is posed on them. Proper retrofitting of historical structures involves a thorough understanding of their structural pathology, before proceeding with any intervention measures. In this paper, a methodology is presented for the evaluation of the actual state of historical masonry structures, which can provide a useful tool for the seismic response assessment before and after the retrofitting. The methodology is mainly focused on the failure and vulnerability analysis of masonry structures using the finite element method. Using this methodology the retrofitting of historical structures with innovative techniques is investigated. The innovative technique presented here involves the exploitation of Shape Memory Alloy prestressed bars. This type of intervention is proposed because it ensures increased reversibility and minimization of interventions, in comparison with conventional retrofitting methods. In this paper, a case study is investigated for the demonstration of the proposed methodologies and techniques, which comprises a masonry Byzantine church and a masonry Cistern. Prestressed SMA alloy bars are placed into the load-bearing system of the structure. The seismic response of the non-retrofitted and the retrofitted finite element models are compared in terms of seismic energy dissipation and displacements diminution.

입구와 유연한 구조물로 구성된 경계를 가지는 구조-음향 연성계의 수학적 표현 (A Mathematical Formulation of the Structural-acoustic System with an Opening and a Flexible Structure)

  • 서희선;김양한
    • 한국소음진동공학회논문집
    • /
    • 제15권5호
    • /
    • pp.527-535
    • /
    • 2005
  • This paper explains a general coupling system in terms of the system parameters. impedance of a cavity or mobility of a structure. To easily access the mechanism of the structural-acoustic coupled system, a simple expression is derived. A general coupled equation is also derived of a general coupled problem constituted a flexible structure and an opening boundary in terms of vector and matrix notation, and is analyzed the coupling phenomena using the understanding acquired simple coupled system. The paper shows that the general coupled equation is expanded version of the simple coupled equation by some limiting checks. The paper also shows that the degree of coupling is proportioned to a stiffness of the acoustic system and a modal coupling coefficient, but is in inverse proportion to a mass of the structural system and the difference of the excitation frequency and resonant frequency of the acoustic or structural system.

Structural Basis of the Disease-related Proteins: Target Oriented Structural Proteomics

  • Jinho Moon;Heo, Yong-Suk;Kim, Young-Kwan;Kim, Hye-Yeon;Park, Min-Hye;Hwang, Kwang-Yeon
    • 한국결정학회:학술대회논문집
    • /
    • 한국결정학회 2003년도 춘계학술연구발표회
    • /
    • pp.15-15
    • /
    • 2003
  • To discover new drugs more quickly and more efficiently, pharmaceutical companies and biotechnology firms are increasingly turning to the genomics and the structural proteomics technologies. Structural-proteomics can provide a foundation for this through the determination and analysis for protein structure on a genomics scale. Among many structures determined by CGI, we will present with the representative examples drawn from our work on novel structures or complex structures of the disease-related proteins. The alpha subunit of Hypoxia-inducible factor (HIF) is targeted for degradation under normoxic conditions by an ubiquitin-ligase complex that recognizes a hydroxylated proline residue in HIF. Hydroxylation is catalysed by HIF prolyl 4-hydroxylases (HIFPH) which are fe(II) and 2-oxoglutarate (2-OG) dependent oxygenases. Here, we discuss the first crystal structure of the catalytic domain of HIFPH in complexes, with the Fe(II)/2-OG at 1.8Å. These structures suggest that the Ll region (residues 236-253), which is also conserved in mammals, form a 'lid' that closes over the active site. The structural and mutagenesis analyses allow us to provide a focus for understanding cellular responses to hypoxia and a target for the therapeutic manipulation.

  • PDF

Structural Basis of the Disease-related Proteins: Target Oriented Structural Proteomics

  • Hwang, Kwang-Yeon;Lee, Tae-Gyu;Kim, Jin-Hwan;Jeon, Young-Ho;Seonggu Ro;Cho, Joong-Myung
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.28-28
    • /
    • 2003
  • To discover new drugs more quickly and more efficiently, pharmaceutical companies and biotechnology firms are increasingly turning to the genomics and the structural proteomics technologies. Structural-proteomics can provide a foundation for this through the determination and analysis for protein structure on a genomics scale. Among many structures determined by CGI, we will present with the representative examples drawn from our work on novel structures or complex structures of the disease-related proteins. The alpha subunit of Hypoxia-inducible factor (HIF) is targeted for degradation under normoxic conditions by an ubiquitin-ligase complex that recognizes a hydroxylated proline residue in HIF, Hydroxylation is catalysed by HIF prolyl 4-hydroxylases (HIFPH) which are Fe(II) and 2-oxoglutarate (2-OG) dependent oxygenases. Here, we discuss the first crystal structure of the catalytic domain of HIFPH in complexes, with the Fe(II)/2-OG at 1.8 ${\AA}$. These structures suggest that the L1 region (residues 236-253), which is also conserved in mammals, form a ‘lid’ that closes over the active site. The structural and mutagenesis analyses allow us to provide a focus for understanding cellular responses to hypoxia and a target for the therapeutic manipulation.

  • PDF

Effect of compressible membrane's nonlinear stress-strain behavior on spiral case structure

  • Zhang, Qi-Ling;Wu, He-Gao
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.73-93
    • /
    • 2012
  • With an active structural involvement in spiral case structure (SCS) that is always the design and research focus of hydroelectric power plant (HPP), the compressible membrane sandwiched between steel spiral case and surrounding reinforced concrete was often assumed to be linear elastic material in conventional design analysis of SCS. Unfortunately considerable previous studies have proved that the foam material serving as membrane exhibits essentially nonlinear mechanical behavior. In order to clarify the effect of membrane (foam) material's nonlinear stress-strain behavior on SCS, this work performed a case study on SCS with a compressible membrane using the ABAQUS code after a sound calibration of the employed constitutive model describing foam material. In view of the successful capture of fitted stress-strain curve of test by the FEM program, we recommend an application and dissemination of the simulation technique employed in this work for membrane material description to structural designers of SCS. Even more important, the case study argues that taking into account the nonlinear stress-strain response of membrane material in loading process is definitely essential. However, we hold it unnecessary to consider the membrane material's hysteresis and additionally, employment of nonlinear elastic model for membrane material description is adequate to the structural design of SCS. Understanding and accepting these concepts will help to analyze and predict the structural performance of SCS more accurately in design effort.

The New Structural Design Process of Supertall Buildings in China

  • Lianjin, Bao;Jianxing, Chen;Peng, Qian;Yongqinag, Huang;Jun, Tong;Dasui, Wang
    • 국제초고층학회논문집
    • /
    • 제4권3호
    • /
    • pp.219-226
    • /
    • 2015
  • By the end of 2014, the number of completed and under-construction supertall buildings above 250 meters in China reached 90 and 129, respectively. China has become one of the centers of supertall buildings in the world. Supertall buildings in China are getting taller, more slender, and more complex. The structural design of these buildings focuses on the efficiency of lateral resisting systems and the application of energy dissipation. Furthermore, the research, design, and construction of high-performance materials, pile foundations, and mega-members have made a lot of progress. Meanwhile, more and more challenges are presented, such as the improvement of structural system efficiency, the further understanding of failure models, the definition of design criteria, the application of high-performance materials, and construction monitoring. Thus, local structural engineers are playing a more important role in the design of supertall buildings.

Statistical properties of the maximum elastoplastic story drift of steel frames subjected to earthquake load

  • Li, Gang
    • Steel and Composite Structures
    • /
    • 제3권3호
    • /
    • pp.185-198
    • /
    • 2003
  • The concept of performance based seismic design has been gradually accepted by the earthquake engineering profession recently, in which the cost-effectiveness criterion is one of the most important principles and more attention is paid to the structural performance at the inelastic stage. Since there are many uncertainties in seismic design, reliability analysis is a major task in performance based seismic design. However, structural reliability analysis may be very costly and time consuming because the limit state function is usually a highly nonlinear implicit function with respect to the basic design variables, especially for the complex large-scale structures for dynamic and nonlinear analysis. Understanding statistical properties of the structural inelastic deformation, which is the aim of the present paper, is helpful to develop an efficient approximate approach of reliability analysis. The present paper studies the statistical properties of the maximum elastoplastic story drift of steel frames subjected to earthquake load. The randomness of earthquake load, dead load, live load, steel elastic modulus, yield strength and structural member dimensions are considered. Possible probability distributions for the maximum story are evaluated using K-S test. The results show that the choice of the probability distribution for the maximum elastoplastic story drift of steel frames is related to the mean value of the maximum elastoplastic story drift. When the mean drift is small (less than 0.3%), an extreme value type I distribution is the best choice. However, for large drifts (more than 0.35%), an extreme value type II distribution is best.