• Title/Summary/Keyword: structural understanding

Search Result 1,350, Processing Time 0.027 seconds

A Study on Relationship between Element theory of Cecil Balmond and Virtual Circulation of Gilles Delueze (세실 발몽드의 요소이론과 들뢰즈의 잠재적순환론의 관계성 연구)

  • Lim, Ki-Taek
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.1
    • /
    • pp.124-131
    • /
    • 2013
  • The innovative designer and structural engineer, Cecil Balmond is co-representative of Ove Arup and has been co-worked with world-famous architects and has been influenced so much on architectural thinking. These days he extended his career as an architect. Moreover, he has been noticed through a few publishing by his own architectural thinking. He is describing the World with his unique insight based on structural perspectives, which have much common grounds with that of Deulezian philosophy. It is especially valuable to study the relationship between his thinking of Interior-Exterior Ring and Deleuzian thinking of Virtual Circulation for understanding more clearly about structural and compositional principle how world is composed of. The Ring is circulationg from interior to exterior which is similar with Deleuzian concept that the Smooth and the Striated is circulationg mutually. Seamless flight line would be ceaseless creative virtual process to actuality.

Load Transfer Mechanism between Rafter and Cross-beam by 2-D Analysis (이차원해석에 의한 서까래 도리 사이의 하중전달 메카니즘)

  • Jung, Sung-Jin;Hong, Sung-Gul;Kim, Nam-Hee;Lee, Young-Wook;Hwang, Jong-Kook;Joo, Seok-Jun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.229-234
    • /
    • 2007
  • In the structural analysis of the Korean traditional wooden structure, while the understanding of the transfer mechanism of roof load is very important, there are few researches on this subject. So, some modeling methods considering the connecting methods of the Korean traditional wooden structure are suggested, the results using each modeling method are compared, and the most reasonable analytical model is presented in this study.

  • PDF

Computational Tridimensional Protein Modeling of Cry1Ab19 Toxin from Bacillus thuringiensis BtX-2

  • Kashyap, S.;Singh, B.D.;Amla, D.V.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.788-792
    • /
    • 2012
  • We report the computational structural simulation of the Cry1Ab19 toxin molecule from B. thuringiensis BtX-2 based on the structure of Cry1Aa1 deduced by x-ray diffraction. Validation results showed that 93.5% of modeled residues are folded in a favorable orientation with a total energy Z-score of -8.32, and the constructed model has an RMSD of only $1.13{\AA}$. The major differences in the presented model are longer loop lengths and shortened sheet components. The overall result supports the hierarchical three-domain structural hypothesis of Cry toxins and will help in better understanding the structural variation within the Cry toxin family along with facilitating the design of domain-swapping experiments aimed at improving the toxicity of native toxins.

A Simple Method of Vibration Analysis of Special Orthotropic Plate with A Pair of Opposite Edges Simply Supported and The Other Pair of Opposite Edges Free (양단단순-양단자유지지된 특별직교 이방성 적층복합판의 진동해석을 위한 간편법)

  • Kim Duk-Hyun;Kim, Kyeong-Jin;Hong, Chang-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.135-142
    • /
    • 1996
  • In this paper, a simple tut accurate method of vibration analysis of structural elements with or without attached mass/masses is presented. The method used has been developed by the senior author since 1974. This method is very effective for the plates with arbitrary boundary conditions and irregular sections. This method is applied to the special orthotropic Plate with two opposite edges simply supported and the other two opposite edges free. Such plate represents the most of the simply supported bridges/decks, including concrete and girders-cross beam systems. Detailed illustration is given for beams and plates for easy understanding. Some laminate orientation for which the special orthotropic equations can be applied are identified.

  • PDF

Issues in Static FE Analysis of Reinforced Concrete Panels subjected to Biaxial Tensile Loads (이축인장을 받는 철근콘크리트 패널의 정적 유한요소해석에서의 논점)

  • 이상진;이홍표;이영정
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.569-576
    • /
    • 2003
  • Fundamental issues in static finite element analysis of reinforced concrete panel subjected to biaxial tensile loads are discussed. This paper is trying to bring our attention to the appropriate use of concrete material models such as cracking criteria, tension stiffening model and the steel models which are basically used in the nonlinear finite element analysis of reinforced concrete panels. We mainly investigate the sensitivity of available material models and finite element technologies to the finite element analysis result using our recent reinforced concrete panel experiment result. Throughout this study, we found that the judicious use of the material models and finite element technologies with the sound understanding of structural characteristics can only guarantee the accurate prediction of panel behaviour.

  • PDF

The vertical spanning strip wall as a coupled rocking rigid body assembly

  • Sorrentino, Luigi;Masiani, Renato;Griffith, Michael C.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.4
    • /
    • pp.433-453
    • /
    • 2008
  • The equation of motion of a one way (vertical) spanning strip wall, as an assembly of two rigid bodies, is presented. Only one degree of freedom is needed to completely describe the wall response as the bodies are assumed to be perfectly rectangular and are allowed to rock but not to slide horizontally. Furthermore, no arching action occurs since vertical motion of the upper body is not restrained. Consequently, the equation of motion is nonlinear, with non constant coefficients and a Coriolis acceleration term. Phenomena associated with overburden to self weight ratio, motion triggering, impulsive energy dissipation, amplitude dependency of damping and period of vibration, and scale effect are discussed, contributing to a more complete understanding of experimental observations and to an estimation of system parameters based on the wall characteristics, such as intermediate hinge height and energy damping, necessary to perform nonlinear time history analyses. A comparison to a simple standing, or parapet, wall is developed in order to better highlight the characteristics of this assembly.

Upgrading flexural performance of prefabricated sandwich panels under vertical loading

  • Kabir, M.Z.;Rezaifar, O.;Rahbar, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.277-295
    • /
    • 2007
  • 3-D wall panels are used in construction of exterior and interior bearing and non-load bearing walls and floors of building of all types of construction. Fast construction, thermal insulation, reduced labor expense and weight saving are the most well pronounced advantage of such precast system. When the structural performance is concerned, the main disadvantage of 3D panel, when used as floor slab, is their brittleness in flexure. The current study focuses on upgrading ductility and load carrying capacity of 3D slabs in two different ways; using additional tension reinforcement, and inserting a longitudinal concentrated beam. The research is carried on both experimentally and numerically. The structural performance in terms of load carrying capacity and flexural ductility are discussed in details. The obtained results could give better understanding and design consideration of such prefabricated system.

Rating of A Plate Girder Bridge through Load Test (강거더교의 재하시험을 통한 내하력평가)

  • Juhn, Gui Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.1
    • /
    • pp.89-97
    • /
    • 1998
  • This paper presents the results of the load test performed on a steel plate girder bridge and suggests the procedure of bridge rating through the load test. In general the girder bridge resist the loads as a complex three-dimensional structural system. Therefore the test results are analyzed for the longitudinal and the transverse response characteristics. The bending moments based on the beam analysis are compared with the measured values for longitudinal response characteristics. The lateral load distribution characteristics are assessed based on the load test results for transverse response characteristics. Also the rating of the test bridge is performed by using the suggested rating procedure which considers the actual response characteristics of the bridge. The suggested procedure can be used for understanding of actual response characteristics and evaluating load carrying capacity of the steel plate girder bridge.

  • PDF

Purification and Structural Studies on Human Pro-ghrelin

  • Yun, Ji-Hye;Lee, Jee-Won;Lee, Weon-Tae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.1
    • /
    • pp.40-50
    • /
    • 2008
  • Ghrelin is a unique peptide hormone that releases growth factor and it stimulates appetite. It comes from pre pro-ghrelin by the post translational modification process and its innate functions are known as food up-take and the growth hormone regulation. Therefore, the structural information of ghrelin precursor is of importance in understanding it function. From our results, we found that the solution structure of ghrelin is mostly random coil conformation at neutral pH value and the structural population changes with pH environments. Data from circular dichroism in different TFE concentrations revealed that the secondary structure changes from random coil to a-helix and the isodichroic point is observed at 202nm, implying that two equilibrium states exist between random coil and helical structure.

Investigation of field emission mechanism of undoped polyucrystalline diamond films

  • Shim, Jae-Yeob;Chi, Eung-Joon;Song, Kie-Moon;Baik, Hong-Koo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.62-62
    • /
    • 1999
  • Carbon based materials have many attractive properties such as a wide band gap, a low electron affinity, and a high chemical and mechanical stability. Therefore, researches on the carbon-based materials as field emitters have been drawn extensively to enhance the field emission properties. Especially, diamond gives high current density, high current stability high thermal conductivity durable for high temperature operation, and low field emission behaviors, Among these properties understanding the origin of low field emission is a key factor for the application of diamond to a filed emitter and the verification of the emission site and its distribution of diamond is helpful to clarify the origin of low field emission from diamond There have been many investigations on the origin of low field emission behavior of diamond crystal or chemical vapor deposition (CVD) diamond films that is intentionally doped or not. However, the origin of the low field emission behavior and the consequent field emission mechanism is still not converged and those may be different between diamond crystal and CVD diamond films as well as the diamond that is doped or not. In addition, there have been no systematic studies on the dependence of nondiamond carbon on the spatial distribution of emission sites and its uniformity. Thus, clarifying a possible mechanism for the low field emission covering the diamond with various properties might be indeed a difficult work. On the other hand, it is believed that electron emission mechanisms of diamond are closely related to the emission sites and its distributions. In this context, it will be helpful to compare the spatial distribution of emission sites and field emission properties of the diamond films prepared by systematic variations of structural property. In this study, we have focused on an understanding of the field emission variations of structural property. In this study, we have focused on an understanding of the field emission mechanism for the CVD grown undoped polycrystalline diamond films with significantly different structural properties. The structural properties of the films were systematically modified by varying the CH4/H2 ratio and/or applying positive substrate bias examined. It was confirmed from the present study that the field emission characteristics are strongly dependent on the nondiamond carbon contents of the undoped polycrystalline diamond films, and a possible field emission mechanism for the undoped polycrystalline diamond films is suggested.

  • PDF