• Title/Summary/Keyword: structural similarity index(SSIM)

Search Result 53, Processing Time 0.027 seconds

Structural Similarity Based Video Quality Metric using Human Visual System (구조적 유사도 기반의 인간의 시각적 특성을 이용한 비디오 품질 측정 기준)

  • Park, Jin-Cheol;Lee, Sang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.14 no.1
    • /
    • pp.36-43
    • /
    • 2009
  • Recently, the structural similarity (SSIM) index metric is proposed. In the present paper, a new framework, which is called visual SSIM (VSSIM), is proposed by incorporating crucial human factors into the SSIM. The human factors are foveation, luminance, frequency and motion information. The performance of VSSIM is evaluated by subjective quality test compliant with the Video Quality Expert Group (VQEG) multimedia group test plan. It shows that the visual SSIM is more correlated with the subjective quality result than the conventional SSIM.

Structural Similarity Index for Image Assessment Using Pixel Difference and Saturation Awareness (이미지 평가를 위한 픽셀 변화량과 포화 인지의 구조적 유사도 기법)

  • Jeong, Ji-Soo;Kim, Young-Jin
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.847-858
    • /
    • 2014
  • Until now, a lot of image quality assessment techniques or tools for optimal human visual system(HVS)-awareness have been researched and SSIM(Structural SIMilarity) and its improved techniques are representative examples. However, they often cannot cope with various images and different distortion types robustly, and thus this can cause a large gap between their index values and HVS-awareness. In this paper, we conduct image quality assessment on SSIM and its variants intensively and analyze the causes of each component function's observed anomalies. Then, we propose a novel image quality assessment technique to compensate and improve such anomalies. Additionally, through extensive image assessment simulations, we show that the proposed technique can indicate HVS-awareness more robustly and consistently than SSIM and its variants for various images and different distortion types.

Optimal Image Quality Assessment based on Distortion Classification and Color Perception

  • Lee, Jee-Yong;Kim, Young-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.257-271
    • /
    • 2016
  • The Structural SIMilarity (SSIM) index is one of the most widely-used methods for perceptual image quality assessment (IQA). It is based on the principle that the human visual system (HVS) is sensitive to the overall structure of an image. However, it has been reported that indices predicted by SSIM tend to be biased depending on the type of distortion, which increases the deviation from the main regression curve. Consequently, SSIM can result in serious performance degradation. In this study, we investigate the aforementioned phenomenon from a new perspective and review a constant that plays a big role within the SSIM metric but has been overlooked thus far. Through an experimental study on the influence of this constant in evaluating images with SSIM, we are able to propose a new solution that resolves this issue. In the proposed IQA method, we first design a system to classify different types of distortion, and then match an optimal constant to each type. In addition, we supplement the proposed method by adding color perception-based structural information. For a comprehensive assessment, we compare the proposed method with 15 existing IQA methods. The experimental results show that the proposed method is more consistent with the HVS than the other methods.

Perceptual Color Difference based Image Quality Assessment Method and Evaluation System according to the Types of Distortion (인지적 색 차이 기반의 이미지 품질 평가 기법 및 왜곡 종류에 따른 평가 시스템 제안)

  • Lee, Jee-Yong;Kim, Young-Jin
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1294-1302
    • /
    • 2015
  • A lot of image quality assessment metrics that can precisely reflect the human visual system (HVS) have previously been researched. The Structural SIMilarity (SSIM) index is a remarkable HVS-aware metric that utilizes structural information, since the HVS is sensitive to the overall structure of an image. However, SSIM fails to deal with color difference in terms of the HVS. In order to solve this problem, the Structural and Hue SIMilarity (SHSIM) index has been selected with the Hue, Saturation, Intensity (HSI) model as a color space, but it cannot reflect the HVS-aware color difference between two color images. In this paper, we propose a new image quality assessment method for a color image by using a CIE Lab color space. In addition, by using a support vector machine (SVM) classifier, we also propose an optimization system for applying optimal metric according to the types of distortion. To evaluate the proposed index, a LIVE database, which is the most well-known in the area of image quality assessment, is employed and four criteria are used. Experimental results show that the proposed index is more consistent with the other methods.

Analysis of Image Similarity Index of Woven Fabrics and Virtual Fabrics - Application of Textile Design CAD System and Shuttle Loom - (직물과 가상소재의 화상 유사성 분석 연구 - 수직기 및 텍스타일 CAD시스템 활용 -)

  • Yoon, Jung-Won;Kim, Jong-Jun
    • Fashion & Textile Research Journal
    • /
    • v.15 no.6
    • /
    • pp.1010-1017
    • /
    • 2013
  • Current global textiles and fashion industries have gradually shifted focus to high value-added, high sensibility, and multi-functional products based on new human-friendliness and sustainable growth technologies. Textile design CAD systems have been developed in conjunction with computer hardware and software sector advances. This study compares the patterns or images of actual woven fabrics and virtual fabrics prepared with a textile design CAD system. In this study, several weave structures (such as fancy yarn weave and patterns) were prepared with a shuttle loom. The woven textile images were taken using a CCD camera. The same weave structure data and yarn data were fed into a textile design CAD system in order to simulate fabric images as similarly as possible. Similarity Index analysis methods allowed for an analysis of the index between the actual fabric specimen and the simulated image of the corresponding fabric. The results showed that repeated small pattern weaves provide superior similarity index values than those of a fancy yarn weave that indicate some irregularities due to fancy yarn attributes. A Complex Wavelet Structural Similarity(CW-SSIM) index resulted in a better index than other methods such as Multi-Scale(MS) SSIM, and Feature Similarity(FS) SSIM, across fabric specimen images. A correlation analysis of the similarity index based on an image analysis and a similarity evaluation by panel members was also implemented.

Feasibility of Automated Detection of Inter-fractional Deviation in Patient Positioning Using Structural Similarity Index: Preliminary Results (Structural Similarity Index 인자를 이용한 방사선 분할 조사간 환자 체위 변화의 자동화 검출능 평가: 초기 보고)

  • Youn, Hanbean;Jeon, Hosang;Lee, Jayeong;Lee, Juhye;Nam, Jiho;Park, Dahl;Kim, Wontaek;Ki, Yongkan;Kim, Donghyun
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.258-266
    • /
    • 2015
  • The modern radiotherapy technique which delivers a large amount of dose to patients asks to confirm the positions of patients or tumors more accurately by using X-ray projection images of high-definition. However, a rapid increase in patient's exposure and image information for CT image acquisition may be additional burden on the patient. In this study, by introducing structural similarity (SSIM) index that can effectively extract the structural information of the image, we analyze the differences between daily acquired x-ray images of a patient to verify the accuracy of patient positioning. First, for simulating a moving target, the spherical computational phantoms changing the sizes and positions were created to acquire projected images. Differences between the images were automatically detected and analyzed by extracting their SSIM values. In addition, as a clinical test, differences between daily acquired x-ray images of a patient for 12 days were detected in the same way. As a result, we confirmed that the SSIM index was changed in the range of 0.85~1 (0.006~1 when a region of interest (ROI) was applied) as the sizes or positions of the phantom changed. The SSIM was more sensitive to the change of the phantom when the ROI was limited to the phantom itself. In the clinical test, the daily change of patient positions was 0.799~0.853 in SSIM values, those well described differences among images. Therefore, we expect that SSIM index can provide an objective and quantitative technique to verify the patient position using simple x-ray images, instead of time and cost intensive three-dimensional x-ray images.

Local Differential Pixel Assessment Method for Image Stitching (영상 스티칭의 지역 차분 픽셀 평가 방법)

  • Rhee, Seongbae;Kang, Jeonho;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.775-784
    • /
    • 2019
  • Image stitching is a technique for solving the problem of narrow field of view of a camera by composing multiple images. Recently, as the use of content such as Panorama, Super Resolution, and 360 VR increases, the need for faster and more accurate image stitching technology is increasing. So far, many algorithms have been proposed to satisfy the required performance, but the objective evaluation method for measuring the accuracy has not been standardized. In this paper, we present the problems of PSNR and SSIM(Structural similarity index method) measurement methods and propose a Local Differential Pixel Mean method. The LDPM evaluation method that includes geometric similarity and brightness measurement information is proved through a test, and the advantages of the evaluation method are revealed through comparison with SSIM.

Newly-designed adaptive non-blind deconvolution with structural similarity index in single-photon emission computed tomography

  • Kyuseok Kim;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4591-4596
    • /
    • 2023
  • Single-photon emission computed tomography SPECT image reconstruction methods have a significant influence on image quality, with filtered back projection (FBP) and ordered subset expectation maximization (OSEM) being the most commonly used methods. In this study, we proposed newly-designed adaptive non-blind deconvolution with a structural similarity (SSIM) index that can take advantage of the FBP and OSEM image reconstruction methods. After acquiring brain SPECT images, the proposed image was obtained using an algorithm that applied the SSIM metric, defined by predicting the distribution and amount of blurring. As a result of the contrast to noise ratio (CNR) and coefficient of variation evaluation (COV), the resulting image of the proposed algorithm showed a similar trend in spatial resolution to that of FBP, while obtaining values similar to those of OSEM. In addition, we confirmed that the CNR and COV values of the proposed algorithm improved by approximately 1.69 and 1.59 times, respectively, compared with those of the algorithm involving an inappropriate deblurring process. To summarize, we proposed a new type of algorithm that combines the advantages of SPECT image reconstruction techniques and is expected to be applicable in various fields.

Evaluation of Stimulus Strategy for Cochlear Implant Using Neurogram (Neurogram을 이용한 인공와우 자극기법 평가 연구)

  • Yang, Hyejin;Woo, Jihwan
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.47-54
    • /
    • 2013
  • Electrical stimulation is delivered to auditory nerve (AN) through the electrodes in cochlear implant system. Neurogram is a spectrogram that includes information of neural response to electrical stimulation. We hypothesized that the similarity between a neurogram and an input-sound spectrogram could show how well a cochlear implant system works. In this study, we evaluated electrical stimulus configuration of CIS strategy using the computational model. The computational model includes stochastic property and anatomical features of cat auditory nerve fiber. To evaluate similarity between a neurogram and an input-sound spectrogram, we calculated Structural Similarity Index (SSIM). The results show that the dynamic range and the stimulation rate per channel influenced SSIM. Finally, we suggested the optimal configuration within the given stimulus CIS. We expect that the results and the evaluating procedure could be employed to improve the performance of a cochlear implant system.

Synthetic Infra-Red Image Dataset Generation by CycleGAN based on SSIM Loss Function (SSIM 목적 함수와 CycleGAN을 이용한 적외선 이미지 데이터셋 생성 기법 연구)

  • Lee, Sky;Leeghim, Henzeh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.476-486
    • /
    • 2022
  • Synthetic dynamic infrared image generation from the given virtual environment is being the primary goal to simulate the output of the infra-red(IR) camera installed on a vehicle to evaluate the control algorithm for various search & reconnaissance missions. Due to the difficulty to obtain actual IR data in complex environments, Artificial intelligence(AI) has been used recently in the field of image data generation. In this paper, CycleGAN technique is applied to obtain a more realistic synthetic IR image. We added the Structural Similarity Index Measure(SSIM) loss function to the L1 loss function to generate a more realistic synthetic IR image when the CycleGAN image is generated. From the simulation, it is applicable to the guided-missile flight simulation tests by using the synthetic infrared image generated by the proposed technique.