DOI QR코드

DOI QR Code

Structural Similarity Based Video Quality Metric using Human Visual System

구조적 유사도 기반의 인간의 시각적 특성을 이용한 비디오 품질 측정 기준

  • Park, Jin-Cheol (Department of Electrical Engineering, Yonsei University) ;
  • Lee, Sang-Hoon (Department of Electrical Engineering, Yonsei University)
  • 박진철 (연세대학교 전기전자공학부) ;
  • 이상훈 (연세대학교 전기전자공학부)
  • Published : 2009.01.30

Abstract

Recently, the structural similarity (SSIM) index metric is proposed. In the present paper, a new framework, which is called visual SSIM (VSSIM), is proposed by incorporating crucial human factors into the SSIM. The human factors are foveation, luminance, frequency and motion information. The performance of VSSIM is evaluated by subjective quality test compliant with the Video Quality Expert Group (VQEG) multimedia group test plan. It shows that the visual SSIM is more correlated with the subjective quality result than the conventional SSIM.

최근 에러의 가시도를 측정하던 기존 패러다임의 한계를 극복하고자 structural similarity (SSIM) metric이 제안되어 우수한 성능을 보이고 있다. 하지만 SSIM은 기존에 활발히 연구되어오던 인간시각체계의 민감도에 대한 특성을 완전히 배제함으로써 새로운 한계점을 노출한다. 본 논문에서는 포비에이션 포인트로부터의 거리, 평균 휘도 값, DCT 계수, 모션 정보를 이용하여 통합된 시각적 가중치를 정의하였고 이를 SSIM과 자연스럽게 결합함으로써 성능을 개선하였다. VQEG 멀티미디어 그룹의 테스트 플랜을 이용한 테스트를 통해 본 논문의 품질측정 기준이 기존의 SSIM 보다 주관적 화질평가의 결과와 연관도가 더 높음을 보임으로써 성능 향상을 증명하였다.

Keywords

References

  1. Z. Wang, A. C. Bovik, “Modern Image Quality Assessment,” Morgan & Claypool Publishers, 2006
  2. Z. Wang, H. R. Sheikh and A. C. Bovik, “Objective Video Quality Assessment” in The Handbook of Video Databases: Design and Application, B. Furht and O. Marqure (Editors) , Boca Raton, Florida: CRC Press, pp. 1041-1078, Sept. 2003
  3. Z. Wang, H. R. Sheikh and A. C. Bovik, “Objective Video Quality Assessment” in The Handbook of Video Databases: Design and Application, B. Furht and O. Marqure (Editors) , Boca Raton, Florida: CRC Press, pp. 1041-1078, Sept. 2003
  4. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image Quality Assessment: From error visivility to structural similarity,” IEEE Trans. Image Processing , vol. 13, no. 4, pp. 600-612, Apr. 2004 https://doi.org/10.1109/TIP.2003.819861
  5. Zhou Wang, Ligang Lu and A. C. Bovik “Video quality assessment based on structual distortion measurement,” Signal Processing Image Communication, vol.19, no.2, pp.121-132, Feb. 2004 https://doi.org/10.1016/S0923-5965(03)00076-6
  6. S. Lee, M. S. Pattichis and A. C. Bovik, “Foveated video quality assessment,” IEEE Trans. Multimedia, pp. 129-132, vol. 4, Mar. 2002 https://doi.org/10.1109/6046.985561
  7. Z. Wang and A. C. Bovik, “Embedded Foveation Image Coding,” IEEE Trans. Image Process., pp. 1397-1410, vol. 10, no.10, Oct. 2001 https://doi.org/10.1109/83.951527
  8. J. Malo, A. M. Pons, and J. M. Artigas, “Subjective image fidelity metric based on bit allocation of the human visual system in the DCT domain,” Image Vis. Comput., vol. 15, no. 7, pp. 535.548, 1997 https://doi.org/10.1016/S0262-8856(96)00004-2
  9. J. Malo, J. Gutierrez, I. Epifanio, F. Ferri, and J. M. Artigas, “Perceptual feed-back in multigrid motion estimation using an improved DCT quantization,” IEEE Trans. Image Process., vol. 10, no. 10, pp. 1411.1427, Oct. 2001 https://doi.org/10.1109/83.951528
  10. S. Winkler, “Issues in vision modeling for perceptual video quality assessment,” Singnal Processing, vol. 78, pp. 231-252, Oct. 1999 https://doi.org/10.1016/S0165-1684(99)00062-6
  11. ITU-R, “Methodology for the subjective assessement of the quality of television pictures,” Recommendation ITU-R BT.500-11, 2002
  12. ITU-T, “Subjective video quality assessment methods for mulitmedia applications,” Recommendation ITU-T P.910, 2002
  13. http://www.vqeg.org
  14. Video Quality Expert Group, 'Multimedia Group Test Plan,' 2006
  15. M. Pinson and S. Wolf. “A New Standardized Method for Objectively MeasuringVideo Quality, IEEE Transactions on Broadcasting, VOL. 50, NO.3, pp. 312-322, Sept., 2004 https://doi.org/10.1109/TBC.2004.834028