• Title/Summary/Keyword: structural seismic response

Search Result 1,317, Processing Time 0.03 seconds

The Application of a Nonlinear Direct Spectrum Method for Mixed Building Structure (복합구조물에 대한 비선형 직접스펙트럼법의 적용)

  • 강병두;박진화;전대한;김재웅
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.258-265
    • /
    • 2002
  • Most structures are expected deform nonlinear and inelastic behavior when subjected to strong ground motion. Nonlinear time history analysis(NTHA) is the most rigorous procedure to compute seismic performance in the various inelastic analysis methods. But nonlinear analysis procedures necessitate more reliable and practical tools for predicting seismic behavior of structures. Some building codes propose the capacity spectrum method. This method is the concept of an equivalent linear system, wherein a linear system having reduced stiffness and increased damping is used to estimate the response of the nonlinear system. This procedure are conceptually simple, but the iterative procedure is time-consuming and may sometimes lead to no solution or multiple solutions. This paper presents a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of structures, without iterative computations, given by the structural initial elastic period and yield strength from the pushover analysis, especially for mixed building structure.

  • PDF

Dynamic Property Evaluation of Control Equipment using Lead Rubber Bearing (납-고무베어링을 적용한 제어장비의 동적 특성평가)

  • 이경진;김갑순;서용표
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.341-348
    • /
    • 2002
  • In these days, The base isolation system is often used to improve the seismic capacity of the structures instead of conventional techniques of strengthening the structural members. The purpose of this study is to evaluate dynamic property evaluation of control equipment using lead Lead Rubber Bearing. In this study, a base isolation test of seismic monitoring control cabinet with LRB(lead rubber bearing) was performed. The cabinet will be installed on access floor in MCR(main control room) of nuclear power plant. Details and dynamic characteristics of the access floor were considered in the construction of testing specimen. N-S component of El Centre earthquake was used as seismic input motion. Acceleration response spectrums in the top of cabinets showed that the first mode frequency of cabinet with LRB(lead rubber bearing) was shifted to 7.5 Hz in compared with 18Hz of cabinet without LRB and the maximum peak acceleration was reduced in a degree of22 percent from 2.35 g to 1.84 g

  • PDF

Investigation of wall flexibility effects on seismic behavior of cylindrical silos

  • Livaoglu, Ramazan;Durmus, Aysegul
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.159-172
    • /
    • 2015
  • This paper is concerned with effects of the wall flexibility on the seismic behavior of ground-supported cylindrical silos. It is a well-known fact that almost all analytical approximations in the literature to determine the dynamic pressure stemming from the bulk material assume silo structure as rigid. However, it is expected that the horizontal dynamic material pressures can be modified due to varying horizontal extensional stiffness of the bulk material which depends on the wall stiffness. In this study, finite element analyses were performed for six different slenderness ratios according to both rigid and flexible wall approximations. A three dimensional numerical model, taking into account bulk material-silo wall interaction, constituted by ANSYS commercial program was used. The findings obtained from the numerical analyses were discussed comparatively for rigid and flexible wall approximations in terms of the dynamic material pressure, equivalent base shear and bending moment. The numerical results clearly show that the wall flexibility may significantly affects the characteristics behavior of the reinforced concrete (RC) cylindrical silos and magnitudes of the responses under strong ground motions.

Development of the vibration control devices and the optimal base-isolation design system for Structures (구조물 진동제어장치 개발 및 최적 면진설계 시스템 개발)

  • Kim, Byung-Hyun;Chung, Jung-Hoon;Moon, Seok-Jun;Huh, Young-Cheol;Chung, Jong-Ahn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.375-380
    • /
    • 2004
  • Seismic Isolation and Shock/vibration Control Laboratory has performed the National Research Laboratory(NRL) project, 'Design and Application of Control Devices against Earthquake/Shock/Vibration'. In this project, the prototypes of the vibration control devices for structural control against earthquake and wind were developed and verified their performances. And also, the computer programs were developed for the seismic response analysis and the optimum design of the base-isolated structures with vibration control devices. This paper introduces the developed vibration control devices and computer programs.

  • PDF

Damage Estimation and LCC Optimal Design of Seismic Isolated Bridges considering nonlinearities of Pier and Isolator (교각 및 지진격리장치의 비선형성을 고려한 지진격리교량의 손상평가 및 LCC 최적설계)

  • 고현무;함대기;신정환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.344-351
    • /
    • 2003
  • In order to consider the characteristics of nonlinear dynamic responses of seismic isolated bridges reasonably, piers and isolators are modeled as a 2-DOF bilinear system. Then nonlinear time-history earthquake response analysis is accomplished many artificial input ground motions which were generated to reflect the characteristics of earthquakes. Damage probabilities and failure probabilities of each structural elements of the brides are calculated by using Monte-Carlo simulation method. Based on LCC evaluation considering various cost items of direct/indirect damage costs, the optimal design method of seismic isolated bridges is proposed. By using a sensitivity analysis about the design variables and a cost effectiveness evaluation in the viewpoint of LCC, the validity and the adequacy of proposed optimal design method are verified.

  • PDF

Effects of pulse-like nature of forward directivity ground motions on the seismic behavior of steel moment frames

  • Mansouri, Iman;Shahbazi, Shahrokh;Hu, Jong Wan;Moghaddam, Salar Arian
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 2019
  • In the structures with high level of ductility, the earthquake energy dissipation in structural components is an important factor that describes their seismic behavior. Since the connection details play a major role in the ductile behavior of structure, in this paper, the seismic response of 3-, 5- and 8-story steel special moment frames (SMFs) is investigated by considering the effects of panel zone modeling and the influence of forward-directivity near-field ground motions. To provide a reasonable comparison, selected records of both near and far-field are used in the nonlinear time-history analysis of models. The results of the comparison of the median maximum inter-story drift under excitation by near-field (NF) records and the far-field (FF) ground motions show that the inter-story drift demands can be obtained 3.47, 4.86 and 5.92 times in 3-, 5- and 8-story structures, respectively, undergoing near-field earthquakes.

Procedure of Seismic Performance Evaluation of LNG Receiving Terminal Facilities (천연가스 생산기지 시설물의 내진성능평가 절차)

  • Lee, Tae-Hyung;Lee, Eunsuk;Park, Taekyu;Hong, Seong Kyeong;Kim, Joonho
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.110-115
    • /
    • 2014
  • It is crucial for important facilities to withstand strong earthquakes because their damage may cause undesirable socio-economic effect. A liquefied natural gas (LNG) receiving terminal is one of the lifeline facilities whose seismic safety needs to be guaranteed. Even though all operating LNG receiving terminals in Korea were seismically designed, old design codes do not guarantee to comply with the current seismic design codes. In addition, if the constructional materials have been deteriorated, the seismic capacity of facilities may be also deteriorated. Therefore, it is necessary that the seismic performance of LNG receiving terminals is evaluated and the facilities that lack of seismic capacity have to be rehabilitated. In this paper, a procedure of seismic performance evaluation of such facilities is developed such that the procedure consists of three phases, namely pre-analysis, analysis, and evaluation phases. In the pre-analysis phase, design documents are reviewed and walk-on inspection is performed to determine the current state of the material properties. In the analysis phase, a structural analysis under a given earthquake or a seismic effect is performed to determine the seismic response of the structure. In the evaluation phase, seismic performance of the structure is evaluated based on limit states. Two of the important facilities, i.e. the submerged combustion vaporizer (SMV) and pipe racks of one of the Korean LNG receiving terminals are selected and evaluated according to the developed procedure. Both of the facilities are safe under the design level earthquake.

Seismic control of structures using sloped bottom tuned liquid dampers

  • Bhosale, Amardeep D.;Murudi, Mohan M.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.233-241
    • /
    • 2017
  • Earlier numerous studies have been done on implementation of Tuned Liquid Damper (TLD) for structural vibration control by many researchers. As per current review there is no significant study on a sloped bottom TLD. TLD's are passive devices. A TLD is a tank rigidly attached to the structure and filled partially by liquid. When fundamental linear sloshing frequency is tuned to structure's natural frequency large sloshing amplitude is expected. In this study set of experiments are conducted on flat bottom and sloped bottom TLD at beach slope $20^{\circ}$, $30^{\circ}$ and $45^{\circ}$, for different types of structures, mass ratio, and depth ratio to investigate the overall effectiveness of TLD and specific effect of TLD parameters on structural response. This experimental study shows that a properly designed TLD reduces structural response. It is also observed that effectiveness of TLD increases with increase in mass ratio. In this experimental study an effectiveness of sloped bottom TLD with beach slope $30^{\circ}$ is investigated and compared with that of flat bottom TLD in reducing the structural response. It is observed from this study that efficiency of sloped bottom TLD in reducing the response of structure is more as compared to that of flat bottom TLD. It is shown that there is good agreement between numerical simulation of flat bottom and sloped bottom TLD and its experimental results. Also an attempt has been made to investigate the effectiveness of sloped bottom TLD with beach slope $20^{\circ}$ and $45^{\circ}$.

Seismic Performance Evaluation of Concrete Anchors used in Power Plant Equipment by Shaking Table Tests (진동대 실험을 통한 발전기기용 콘크리트 앵커의 성능평가)

  • Lee, Sang-Moon;Jeon, Bub-Gyu;Jung, Woo-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.21-28
    • /
    • 2021
  • The main purpose of this study is to assess the safety of the fixed anchorages subjected to the seismic motion for an operating facilities in the actual power plant. Thus, the experimental study was conducted to investigate the load response in the event of an actual seismic to the anchorages of a nonstructural components. Since there are economic and spatial constraints to study nonstructural components that actually have various forms, alternative test specimens of steel frames with mass were built and the shaking table test was carried out. In order to evaluate the dynamic characteristics and seismic performance, the natural frequency of the target structure was identified through the shaking table test and then the load response characteristics of the anchorage were evaluated by generating an artificial seismic effect like actual seismic. Finally, the structural stiffness was reinforced by fixing the steel frame to the test specimen using bolts, thereby reducing the load transmitted to the anchorage. It will be carried out on the reliability verification of the experiments and areas that have not been carried out due to the site conditions through the analytical approach in the future.

Experimental Study the on Hysteretic Characteristics of Rotational Friction Energy Dissipative Devices (회전 마찰형 제진장치의 이력특성에 대한 실험적 연구)

  • Park, Jin-Young;Han, Sang Whan;Moon, Ki-Hoon;Lee, Kang Seok;Kim, Hyung-Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.227-235
    • /
    • 2013
  • Friction energy dissipative devices have been increasingly implemented as structural seismic damage protecting systems due to their excellent seismic energy dissipating capacity and high stiffness. This study develops rotational friction energy dissipative devices and verifies experimentally their cyclic response. Based on the understanding of the differences between the traditional linear-motion friction behavior and the rotational friction behavior, the configuration of the frictional surface was determined by investigating the characteristics of the micro-friction behavior. The friction surface suggested in this paper consists of brake-lining pads and stainless steel sheets and is normally stressed by high-strength bolts. Based upon these frictional characteristics of the selected interface, the rotational friction energy dissipative devices were developed. Bolt torque-bearing force tests, rotational friction tests of the suggested friction interfaces were carried out to identify their frictional behavior. Test results show that the bearing force is almost linearly proportional to the applied bolt torque and presents stable cyclic response regardless of the experimental parameters selected this testing program. Finally, cyclic tests of the rotational friction energy dissipative devices were performed to find out their structural characteristics and to confirm their stable cyclic response. The developed friction energy dissipative devices present very stable cyclic response and meet the requirements for displacement-dependent energy dissipative devices prescribed in ASCE/SEI 7-10.