• Title/Summary/Keyword: structural seismic response

Search Result 1,317, Processing Time 0.032 seconds

Review of seismic studies of liquid storage tanks

  • Zhao, Ming;Zhou, Junwen
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.557-572
    • /
    • 2018
  • The academic research works about liquid storage tanks are reviewed for the purpose of providing valuable reference to the engineering practice on their aseismic design. A summary of the performance of tanks during past earthquakes is described in this paper. Next, the seismic response of tanks under unidirectional earthquake is reported, supplemented with the dynamic response under multidirectional motions. Then, researches on the influence of soil-structure interaction are brought out to help modify the seismic design approach of tanks in different areas with variable properties of soils. Afterwards, base isolation systems are reported to demonstrate their effectiveness for the earthquake-resistant design of liquid storage tanks. Further, researches about the liquid-structure interaction are reviewed with description of simplified models and numerical analytical methods, some of which consider the elastic effect of tank walls. Moreover, the liquid sloshing phenomenon on the hydrodynamic behaviors of tanks is presented by various algorithms including grid-based and meshfree method. And then the impact of baffles in changing the dynamic characteristics of the liquid-structure system is raised, which shows the energy dissipation by the vortex motion of liquid. In addition, uplifting effect is given to enhance the understanding on the capacity of unanchored tanks and some assessment of their development. At last, the concluding remarks and the aspects of extended research in the field of liquid storage tanks under seismic loads are provided, emphasizing the thermal stress analysis, the replaceable system for base isolation, the liquid-solid interaction and dynamic responses with stochastic excitations.

Seismic Response Control of Adjacent Buildings Using Shared Tuned Mass Damper (공유형 동조질량감쇠기를 이용한 인접건물의 지진응답제어)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.3
    • /
    • pp.75-84
    • /
    • 2014
  • When adjacent tall buildings experience earthquake excitation, structural pounding may happen. In order to mitigate seismic pounding damage to adjacent structures, many studies have been done to date. Tuned mass dampers (TMD) are widely used for reduction of dynamic responses of building structures subjected to earthquake excitations. If a TMD is shared between adjacent buildings and it shows good control performance, it will be effective and economic means to reduce seismic responses of adjacent structures. In this study, control performance of a shared tuned mass damper (STMD) for seismic response reduction of adjacent buildings has been evaluated. For this purpose, two 8-story example buildings were used and multi-objective genetic algorithms has been employed for optimal design of the stiffness and damping parameters of the STMD. Based on numerical analyses, it has been shown that a STMD can effectively control dynamic responses and reduce the effect of pounding between adjacent buildings subjected to earthquake excitations in comparison with a traditional TMD.

Seismic Qualification Analysis of a Small Savonius Style Vertical Axis Wind Turbine (소형 사보니우스형 수직축 풍력발전기의 내진검증)

  • Choi, Young-Hyu;Kang, Min-Gyu;Park, Sung-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.122-129
    • /
    • 2018
  • This study conducted a seismic qualification analysis of small savonius style vertical axis wind turbine(VAWT) using finite element method(FEM). The modal analysis was performed on the wind turbine structure to check the occurrence of resonance caused by the rotation of gearbox and windmill blades. Next, it conducted a seismic response spectrum analysis due to horizontal and vertical seismic load of required response spectrum of safe shutdown earthquake with 5 % damping(RRS/SSE 5%) of KS C IEC 61400 and conducted a static analysis due to deadweight and wind load. The total maximum stress of the VAWT structure was calculated by adding the maximum stresses due to each load case using the square root of the sum of the squares(SRSS) method. Finally, the structural safety of the VAWT structure was verified by comparing the total maximum stress and the allowable stress.

Nonlinear Seismic Behavior Analysis of Skewed Bridges Considering Pounding Between Deck and Abutment (상판과 교대의 충돌을 고려한 사교의 비선형 지진거동 해석)

  • Kang, Seung Woo;Choi, Kwang Kyu;Song, Si Young;Son, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.301-310
    • /
    • 2016
  • There are differences in seismic behavior between non-skewed bridges and skewed bridges due to in-plane rotations caused by pounding between the skewed deck and its abutments during strong earthquake. Many advances have been made in developing design codes and guidelines for dynamic analyses of non-skewed bridges. However, there remain significant uncertainties with regard to the structural response of skewed bridges caused by unusual seismic response characteristics. The purpose of this study is performing non-linear time history analysis of the bridges using abutment-soil interaction model considering pounding between the skewed deck and its abutments, and analyzing global seismic behavior characteristics of the skewed bridges to assess the possibility of unseating. Refined bridge model with abutment back fill, shear key and elastomeric bearing was developed using non-linear spring element. In order to evaluate the amplification of longitudinal and transverse displacement response, non-linear time history analysis was performed for single span bridges. Far-fault and near-fault ground motions were used as input ground motions. According to each parameter, seismic behavior of skewed bridges was evaluated.

A Study on Seismic Performance Improvement of Nuclear Piping System through Dynamic Absorber (동흡진기를 사용한 원전 배관계 내진성능 상향에 대한 연구)

  • Kwag, Shinyoung;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong Hoi
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.41-48
    • /
    • 2018
  • In this study, the dynamic absorber and the damper are applied to improve the seismic performance of the piping system, and their quantitative effects on the piping system performance are examined. For this purpose, the response performances of piping system applied with the dynamic absorber/damper are compared with those of the original piping system. Firstly, the frequency response analyses of the piping system with the presence or the absence of dynamic absorber/damper are performed and these results are compared. It has been shown that the maximum acceleration response per the frequency of the piping system is considerably reduced by installing the dynamic absorber and the damper. Secondly, the seismic responses of the piping systems with and without dynamic absorber/damper are compared. As a result of the numerical analyses, it is confirmed that key responses are reduced by 17%-63% due to the installation of the dynamic absorber and damper. Finally, as a result of the seismic performance evaluation, it is confirmed that the HCLPF (High Confidence of Low Probability of Failure) seismic performances are increased by 1.22 to 2.70 times with respect to the failure modes with an aid of the dynamic absorber and damper.

Seismic Response Control of Tilted Tall Building based on Evolutionary Optimization Algorithm (경사진 고층건물의 진화최적화 알고리즘에 기반한 지진응답 제어)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 2021
  • A tilted tall building is actively constructed as landmark structures around world to date. Because lateral displacement responses of a tilted tall building occurs even by its self-weight, reduction of seismic responses is very important to ensure structural safety. In this study, a smart tuned mass damper (STMD) was applied to the example tilted tall building and its seismic response control performance was investigated. The STMD was composed of magnetorheological (MR) damper and it was installed on the top floor of the example building. Control performance of the STMD mainly depends on the control algorithn. Fuzzy logic controller (FLC) was selected as a control algorithm for the STMD. Because composing fuzzy rules and tuning membership functions of FLC are difficult task, evolutionary optimization algorithm (EOA) was used to develop the FLC. After numerical simulations, it has been seen that the STMD controlled by the EOA-optimized FLC can effectively reduce seismic responses fo the tilted tall building.

Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings

  • Skrekas, Paschalis;Sextos, Anastasios;Giaralis, Agathoklis
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.71-87
    • /
    • 2014
  • Interaction between closely-spaced buildings subject to earthquake induced strong ground motions, termed in the literature as "seismic pounding", occurs commonly during major seismic events in contemporary congested urban environments. Seismic pounding is not taken into account by current codes of practice and is rarely considered in practice at the design stage of new buildings constructed "in contact" with existing ones. Thus far, limited research work has been devoted to quantify the influence of slab-to-slab pounding on the inelastic seismic demands at critical locations of structural members in adjacent structures that are not aligned in series. In this respect, this paper considers a typical case study of a "new" reinforced concrete (R/C) EC8-compliant, torsionally sensitive, 7-story corner building constructed within a block, in bi-lateral contact with two existing R/C 5-story structures with same height floors. A non-linear local plasticity numerical model is developed and a series of non-linear time-history analyses is undertaken considering the corner building "in isolation" from the existing ones (no-pounding case), and in combination with the existing ones (pounding case). Numerical results are reported in terms of averages of ratios of peak inelastic rotation demands at all structural elements (beams, columns, shear walls) at each storey. It is shown that seismic pounding reduces on average the inelastic demands of the structural members at the lower floors of the 7-story building. However, the discrepancy in structural response of the entire block due to torsion-induced, bi-directionally seismic pounding is substantial as a result of the complex nonlinear dynamics of the coupled building block system.

Seismic vulnerability evaluation of a 32-story reinforced concrete building

  • Memari, A.M.;Motlagh, A.R. Yazdani;Akhtari, M.;Scanlon, A.;Ashtiany, M. Ghafory
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.1-18
    • /
    • 1999
  • Seismic evaluation of a 32-story reinforced concrete framed tube building is performed by checking damageability, safety, and toughness limit states. The evaluation is based on Standard 2800 (Iranian seismic code) which recommends equivalent lateral static force, modal superposition, or time history dynamic analysis methods to be applied. A three dimensional linearly elastic model checked by ambient vibration test results is used for the evaluation. Accelerograms of three earthquakes as well as linearly elastic design response spectra are used for dynamic analysis. Damageability is checked by considering story drift ratios. Safety is evaluated by comparing demands and capacities at the story and element force levels. Finally, toughness is studied in terms of curvature ductility of members. The paper explains the methodology selected and various aspects in detail.

A Seismic Analysis of Spent Fuel Handling Tool (사용후 핵연료 취급장비의 내진해석)

  • 김성종;이영신;김재훈;김남균
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1210-1215
    • /
    • 2002
  • The spent fuel handling tool is used to handle the refuel bundle and treated by hoist rope on the bridge crane. The new developed handling tool of NPP(Nuclear Power Plant) should be conformed the structural stability under earthquake condition. In this study, the stress and seismic analysis of the handling tool are performed by finite element method. Using the Floor Response Spectrum(FRS) obtained through the time history analysis, the modal and seismic analysis under Operating Basis Earthquake(OBE) and Safe Shutdown Earthquake(SSE) load conditions are carried out. Total 4 cases of different locations of the trolly and the hook are investigated. With the spring-damper element, the tension analysis of hoist rope is conducted. The stability of handling tool under earthquake load condition is conformed with regulatory guide.

  • PDF

Earthquake Response Analysis of Long-Span Bridges with Multiple Input Motions (다중 지진파 입력을 고려한 장대교량의 지진응답해석)

  • 최준혁;최준성;이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.376-383
    • /
    • 2003
  • For more rational and economical seismic design of long span bridges, it is essential to include in the analysis the effects of multiple input motions and structural or soil nonlinearity which are not considered in the current design practice. In this paper, the effects of these factors on the seismic behavior of long span bridges are studied. First, for the effect of multiple input motions, we take into account the differences in arrival times of seismic waves. To consider nonlinear soil properties we utilize SHAKE which is based on the equivalent linearization method. As a numerical example, a cable-stayed bridge is modelled using the analytical procedures described above. It is shown from the results that the these factors influence the seismic response of the bridge significantly and should never be neglected in design.

  • PDF