• Title/Summary/Keyword: structural seismic response

Search Result 1,317, Processing Time 0.023 seconds

Effect of brick infill panel on the seismic safety of reinforced concrete frames under progressive collapse

  • Tavakoli, Hamidreza;Akbarpoor, Soodeh
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.749-764
    • /
    • 2014
  • Structural safety has always been a key preoccupation for engineers responsible for the design of civil engineering projects. One of the mechanisms of structural failure, which has gathered increasing attention over the past few decades, is referred to as 'progressive collapse' which happens when one or several structural members suddenly fail, whatever the cause (accident, attack, seismic loading(.Any weakness in design or construction of structural elements can induce the progressive collapse in structures, during seismic loading. Masonry infill panels have significant influence on structure response against the lateral load. Therefore in this paper, seismic performance and shear strength of R.C frames with brick infill panel under various lateral loading patterns are investigated. This evaluation is performed by nonlinear static analysis. The results provided important information for additional design guidance on seismic safety of RC frames with brick infill panel under progressive collapse.

Dynamic Response Characteristics of the Suspension Bridge Subjected to Near Fault Ground Motions (근거리 지진에 의한 현수교의 동적응답특성)

  • 한성호;이강혁;유병률;방명석;신재철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.484-491
    • /
    • 2004
  • In this study, the effect of the Near Fault Ground Motion which hasn't been considered at the domestic seismic design is demonstrated through the seismic response analysis of suspension bridge. After selecting the typical Near and Far Fault Ground Motion, the response characteristics are analysed by conducting the seismic response analysis about the long period suspension bridge which is expected to suffer the effect of Near Fault Ground Motions more largely. According to the results of this study, the Near Fault Ground Motions affect the suspension bridge more considerably than the Far Fault Ground Motions.

  • PDF

A review on vibration-based structural pipeline health monitoring method for seismic response (지진 재해 대응을 위한 진동 기반 구조적 관로 상태 감시 시스템에 대한 고찰)

  • Shin, Dong-Hyup;Lee, Jeung-Hoon;Jang, Yongsun;Jung, Donghwi;Park, Hee-Deung;Ahn, Chang-Hoon;Byun, Yuck-Kun;Kim, Young-Jun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.5
    • /
    • pp.335-349
    • /
    • 2021
  • As the frequency of seismic disasters in Korea has increased rapidly since 2016, interest in systematic maintenance and crisis response technologies for structures has been increasing. A data-based leading management system of Lifeline facilities is important for rapid disaster response. In particular, the water supply network, one of the major Lifeline facilities, must be operated by a systematic maintenance and emergency response system for stable water supply. As one of the methods for this, the importance of the structural health monitoring(SHM) technology has emerged as the recent continuous development of sensor and signal processing technology. Among the various types of SHM, because all machines generate vibration, research and application on the efficiency of a vibration-based SHM are expanding. This paper reviews a vibration-based pipeline SHM system for seismic disaster response of water supply pipelines including types of vibration sensors, the current status of vibration signal processing technology and domestic major research on structural pipeline health monitoring, additionally with application plan for existing pipeline operation system.

Seismic Response of Self-Centering Energy Dissipative Braced Frames (셀프센터링 가새골조의 지진응답)

  • Choi, Hyun-Hoon;Christopoulos, C.;Kim, Jin-Koo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.331-336
    • /
    • 2008
  • An self-centering energy-dissipative (SCED) bracing system has recently been developed as a new seismic force resistant bracing system. The advantage of the SCED brace system is that, unlike other comparable advanced bracing systems that dissipate energy, such as the buckling restrained brace system, it has a self-centering capability that reduces or eliminates residual building deformations after major seismic events. In this study seismic performance of SCED braced frames is evaluated for a set of 20 design level earthquake records. According to analysis results the SCED systems showed more uniform interstory drift demand for buildings with 8 story or fewer. The residual deformation in SCED buildings turned out to be much less than that of moment-resisting frames.

  • PDF

Seismic Response of Multiple Span Steel Bridges in the Central and Southeastern United States (미 중부 및 동남부 지역의 다경간 교량의 지진응답)

  • Choi, Eunsoo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.427-439
    • /
    • 2003
  • A previous study evaluated the seismic response of typical multi-span simply supported (MSSS) and multi-span continuous (MSC) steel-girder bridges in the central and southeastern United States. The results showed that the bridges were vulnerable to damage resulting from impact between decks, and large ductility demands on nonductile columns. Furthermore, fixed and expansion bearings were likely to fail during strong ground motion. In this paper, several retrofit measures to improve the seismic performance of typical multi-span simply supported and multi-span continuous steel girder bridges are evaluated, including the use of elastomeric bearings, lead-rubber bearings, and restrainer cables. It is determined that lead-rubber bearings are the most effective retrofit measure for reducing the seismic vulnerability of typical bridges. While isolation provided by elastomeric bearings limits the forces into the columns, the added flexibility results in pounding between decks in the MSSS steel-girder bridge. Restrainer cables, which are becoming a common retrofit measure, are only moderately effective in reducing the seismic vulnerability of MSSS and MSC steel girder bridges.

  • PDF

Seismic Behavior Analyses of a Bridge Considering Damage of Bearings (받침부 손상을 고려한 교량시스템의 지진거동분석)

  • 김상효;마호성;이상우;조병철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.454-461
    • /
    • 2001
  • Dynamic responses of a multi-span simply supported bridge are examined under seismic excitations considering damage of bearings. An idealized mechanical model which can consider components such as pounding, friction at the supports, abutment-soil interaction, rotational and translational motions of foundations, and the nonlinear pier motions, is developed to analyze the effects due to damage of bearings. It is assumed that the bearing's response after failure can be expressed with a sliding model with a friction coefficient between the superstructure and the pier top. It is found that the global seismic behaviors are significantly influenced by the damage of bearings and the damage of bearings may lead to unseating failure at unpredicted supports. Therefore, It can be concluded that detailed seismic response analyses of bridge systems considering damage of bearings is required for the purpose of the seismic safety evaluation.

  • PDF

Seismic performance of a wall-frame air traffic control tower

  • Moravej, Hossein;Vafaei, Mohammadreza;Abu Bakar, Suhaimi
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.463-482
    • /
    • 2016
  • Air Traffic Control (ATC) towers play significant role in the functionality of each airport. In spite of having complex dynamic behavior and major role in mitigating post-earthquake problems, less attention has been paid to the seismic performance of these structures. Herein, seismic response of an existing ATC tower with a wall-frame structural system that has been designed and detailed according to a local building code was evaluated through the framework of performance-based seismic design. Results of this study indicated that the linear static and dynamic analyses used for the design of this tower were incapable of providing a safety margin for the required seismic performance levels especially when the tower was subjected to strong ground motions. It was concluded that, for seismic design of ATC towers practice engineers should refer to a more sophisticated seismic design approach (e.g., performance-based seismic design) which accounts for inelastic behavior of structural components in order to comply with the higher seismic performance objectives of ATC towers.

The effect of local topography on the seismic response of a coupled train-bridge system

  • Qiao, Hong;Du, Xianting;Xia, He;De Roeck, Guido;Lombaert, Geert;Long, Peiheng
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.177-191
    • /
    • 2019
  • The local topography has a significant effect on the characteristics of seismic ground motion. This paper investigates the influence of topographic effects on the seismic response of a train-bridge system. A 3-D finite element model with local absorbing boundary conditions is established for the local site. The time histories of seismic ground motion are converted into equivalent loads on the artificial boundary, to obtain the seismic input at the bridge supports. The analysis of the train-bridge system subjected to multi-support seismic excitations is performed, by applying the displacement time histories of the seismic ground motion to the bridge supports. In a case study considering a bridge with a span of 466 m crossing a valley, the seismic response of the train-bridge system is analyzed. The results show that the local topography and the incident angle of seismic waves have a significant effect on the seismic response of the train-bridge system. Leaving these effects out of consideration may lead to unsafe analysis results.

Seismic performance of lateral load resisting systems

  • Subramanian, K.;Velayutham, M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.487-502
    • /
    • 2014
  • In buildings structures, the flexural stiffness reduction of beams and columns due to concrete cracking plays an important role in the nonlinear load-deformation response of reinforced concrete structures under service loads. Most Seismic Design Codes do not precise effective stiffness to be used in seismic analysis for structures of reinforced concrete elements, therefore uncracked section properties are usually considered in computing structural stiffness. But, uncracked stiffness will never be fully recovered during or after seismic response. In the present study, the effect of concrete cracking on the lateral response of structure has been taken into account. Totally 120 cases of 3 Dimensional Dynamic Analysis which considers the real and accidental torsional effects are performed using ETABS to determine the effective structural system across the height, which ensures the performance and the economic dimensions that achieve the saving in concrete and steel amounts thus achieve lower cost. The result findings exhibits that the dual system was the most efficient lateral load resisting system based on deflection criterion, as they yielded the least values of lateral displacements and inter-storey drifts. The shear wall system was the most economical lateral load resisting compared to moment resisting frame and dual system but they yielded the large values of lateral displacements in top storeys. Wall systems executes tremendous stiffness at the lower levels of the building, while moment frames typically restrain considerable deformations and provide significant energy dissipation under inelastic deformations at the upper levels. Cracking found to be more impact over moment resisting frames compared to the Shear wall systems. The behavior of various lateral load resisting systems with respect to time period, mode shapes, storey drift etc. are discussed in detail.

Generation of Simulated Earthquakes and Time-history Dynamic Analysis of Containment Building (지진 데이터 생성 및 격납건물 시간이력 해석)

  • 배용귀;이성로
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.608-612
    • /
    • 2003
  • In the seismic response analysis, the artificial earthquake time history is generated to do the exact seismic analysis for the complex structural system like as containment building. In the present study the several simulated earthquakes are generated by use of SIMQKE program and the time history dynamic analysis of containment building is performed. Also, the seismic responses are statistically analyzed. The seismic response uncertainty arisen from the simulation of earthquakes is one of major uncertainties and the statistical description is needed to account for the random nature of earthquake.

  • PDF