Acknowledgement
본 연구는 환경부의 재원으로 한국환경산업기술원의 환경시설 재난재해 대응기술개발사업(2019002850005)의 지원을 받아 수행되었습니다.
References
- A. Sanchez, J.P. and Hojjat, A. (2016). Signal processing techniques for vibration-based health monitoring of smart structures, Arch. Comput. Methods Eng., 23(1), 1-15. https://doi.org/10.1007/s11831-014-9135-7
- Alokita, S., Rahul, V., Jayakrishna, K., Kar, V.R., Rajesh, M., Thirumalini, S. and Manikandan, M. (2019). Recent advances and trends in structural health monitoring, Structural health monitoring of biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing Series in Composites Science and Engineering, 53-73.
- Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M. and Inman, D.J. (2021). A review of vibration-based damage detection in civil structures: From traditional methods to machine learning and deep learning applications, Mech. Syst. Signal Process., 147, 107077. https://doi.org/10.1016/j.ymssp.2020.107077
- Bao, C., Hao, H. and Li, Z. (2013). Vibration-based structural health monitoring of offshore pipelines: numerical and experimental study, Struct. Health Monit., 20(5), 769-788. https://doi.org/10.1002/stc.1494
- Bao, Y. and Li, H. (2020). Machine learning paradigm for structural health monitoring, Struct. Health Monit., 20(4), 1353-1372. https://doi.org/10.1177/1475921720972416
- Cawley, P. (2018). Structural health monitoring: Closing the gap between research and industrial deployment, Struct. Health Monit., 17(5), 1225-1244. https://doi.org/10.1177/1475921717750047
- Chae, Y.H., Kim, S.G., Kim, H., Kim, J.T. and Seong, P.H. (2020). A methodology for diagnosing FAC induced pipe thinning using accelerometers and deep learning models, Ann. Nucl. Energy, 143, 107501. https://doi.org/10.1016/j.anucene.2020.107501
- Circuitglobe. com. https://circuitglobe.com/seismic-transducer.html (March 03, 2021).
- Cho, C.W., Cho, S.T. and Yang, K.H. (2011). Study on characteristics of noncontact vibrating displacement sensor, J. Power Syst. Eng., 15(2), 13-18. https://doi.org/10.9726/kspse.2011.15.2.013
- Choi, K., Lee, H., Shin, G. and Hong, S. (2020). Analysis of Elastic Wave Based Leakage Detection Technology Using Accelerometers, J. Korea Inst. Inform. Commun. Eng., 24(9), 1231-1240. https://doi.org/10.6109/JKIICE.2020.24.9.1231
- Choi, Y.C., Park, J.H. and Yoon, D.B. (2008). Monitoring pipe thinning using two accelerometers, Korean Soc. Noise Vib. Eng., 18(12), 1286-1292. https://doi.org/10.5050/KSNVN.2008.18.12.1286
- Choi, Y.O., Kim, J.M., Ahn, B.H. and Choi, B.K. (2020). Feature analysis of acoustic emission and vibration signal according to pipe cracking shape and valve opening/closing, Korean Soc. Noise Vib. Eng., 30(1), 5-10. https://doi.org/10.5050/KSNVE.2020.30.1.005
- Dooley, B. and Lister, D. (2018). Flow-Accelerated Corrosion in Steam Generating Plants, PPEC, 20(4), 194-244.
- El-Zahab, S., Abdelkader, E.M. and Zayed, T. (2018). An accelerometer-based leak detection system, Mech. Syst. Signal Process., 108, 276-291. https://doi.org/10.1016/j.ymssp.2018.02.030
- Fassois, S.D. and Kopsaftopoulos, F.P. (2013). Statistical time series methods for vibration based structural health monitoring, New Trends Struct. Health Monit., 209-264.
- Gao, Y., Brennan, M.J., Joseph, P., Muggleton, J. and Hunaidi, O. (2005). On the selection of acoustic/vibration sensors for leak detection in plastic water pipes, J. Sound Vib., 283(3-5), 927-941. https://doi.org/10.1016/j.jsv.2004.05.004
- Goyal, D. and Pabla, B. (2016). The vibration monitoring methods and signal processing techniques for structural health monitoring: a review, Arch. Comput. Methods Eng., 23(4), 585-594. https://doi.org/10.1007/s11831-015-9145-0
- Gu, D.S., Kim, H.J., Jeong, H.E., Kim, H.E. and Choi, B.K. (2007). Structural vibration analysis caused by piping resonance, Korean Soc. Mech. Eng., 31(2), 190-196. https://doi.org/10.3795/KSME-A.2007.31.2.190
- Han, S.H., Hwang, J.M. and Lee, J.M. (2010). Estimation of the Pipe Thickness using the Variation of the Group Velocity, J. Korea Robot. Soc., 5(1), 32-40.
- Han, S.W. and Park, J.H. (2013). Monitoring of wall thinning of a pipe by measuring natural frequencies of shell vibration modes, Korean Soc. Noise Vib. Eng., 860-861.
- Han, S.W., Park, J.H., Kang, T. and Sohn, K.S. (2014). Development of portable vibration signal-based pipe wall thinning inspection device, Korean Soc. Noise Vib. Eng., 545-547.
- Industrial electronics. http://www.industrial-electronics.com/DAQ/industrial_electronics/input_devices_sensors_transducers_transmitters_measurement/Accelerometers.html (March 03, 2021).
- Ismail, M.I.M., Dziyauddin, R., Ahmad, N. and Ahmad, N. (2018). Vibration detection in water pipelines leakage using wireless three-axis accelerometer sensor, Int. J. Adv. Sci. Technol., 112, 137-150. https://doi.org/10.14257/ijast.2018.112.13
- Jazwinski, A.H. (2007). Stochastic processes and filtering theory. Courier Corporation.
- Jung, D. and Lansey, K. (2015). Water distribution system burst detection using a nonlinear Kalman filter, J. Water Resour. Plan. Manag., 141(5), 04014070. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000464
- Jung, S. (2019). Vibration-based Structural Health Monitoring using Machine Learning with Applications to Plate and Pipeline Structures, Ph.D., Seoul National University, Korea.
- K-water. (2019). Seismic risk assessment of water supply networks, 2020-WS-RR-28-61, 82.
- Kang, J., Park, Y.J., Lee, J., Wang, S.H. and Eom, D.S. (2017). Novel leakage detection by ensemble CNN-SVM and graph-based localization in water distribution systems, IEEE Trans. Ind. Electron., 65(5), 4279-4289. https://doi.org/10.1109/tie.2017.2764861
- Karamizadeh, S., Abdullah, S.M., Halimi, M., Shayan, J. and Javad Rajabi, M. (2014). "Advantage and drawback of support vector machine functionality", 2014 international conference on computer, communications, and control technology (I4CT), IEEE.
- Kawazu, S., Fujita, S. and Minagawa, K. (2013). "Fundamental Study on Health Monitoring for Pipe by Vibration Analysis", Pressure Vessels and Piping Conference, American Society of Mechanical Engineers.
- Kim, D.S. and Lee, J.S. (1999). Propagation and attenuation characteristics of various ground vibrations, J. Korean Soc. Civ. Eng., 19(3-5), 1021-1032.
- Kim, E.H., Park, J., Lee, Y.G., Kim, S. and Park, J.H. (2012). Prediction of short-term behavior of buried polyethylene pipe, J. Korean Soc. Water Wastewater, 26(6), 907-914. https://doi.org/10.11001/jksww.2012.26.6.907
- Kim, J. (2015). The Leak Signal Characteristics and the Leak Point Estimation of Water Pipe, Master's Thesis, The University of Seoul, Korea.
- Kim, J.H. K-water. (2016). Performance evaluation of non-destructive precision diagnosis and development planning of operation monitoring system for large-scale water supply pipelines, 11-1613000-001355-01.
- Kim, J.M., Ahn, B.H., Lee, J.M., Yu, H.T. and Choi, B.K. (2017). Feature analysis of vibration and acoustic emission according to pipe cracking and valve opening/closing, Korean Soc. Noise Vib. Eng., 27(7), 857-862. https://doi.org/10.5050/KSNVE.2017.27.7.857
- LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep learning, Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
- Lee, J.Y. (2015). Variable short-time Fourier transform for vibration signals with transients, J. Vib. Control, 21(7), 1383-1397. https://doi.org/10.1177/1077546313499389
- Lee, S.G. (2007). About the theory and application of acoustic and noise vibration signal processing technology, Korean Soc. Noise Vib. Eng., 17(1): 9-15.
- Lee, S.H., Park, C.S. and Yoon, D.J. (2019). Empirical wave velocity estimation in a large diameter water supply pipeline for impact source localization, J. Korean Soc. Nondestruct. Test., 39(2), 100-108. https://doi.org/10.7779/jksnt.2019.39.2.100
- Lee, S.H., Park, C.S. and Yoon, D.J. (2020). Experimental verification of impact damage detection in long range buried water supply pipeline, J. Korean Soc. Nondestruct. Test., 40(4), 241-250. https://doi.org/10.7779/jksnt.2020.40.4.241
- Lee, S.J., Lee, S.J., Choi, I.S., Park, K.K., Kim, H.T. and Kim, K.T. (2011). Performance improvement of radar target classification using UWB measured signals, J. Electromagn. Eng. Sci., 22(10), 981-989.
- Lee, Y.S. and Yoon, D.J. (2014). Improved estimation of leak location of pipelines using frequency band variation, J. korean Soc. Nondestruc. Test., 34(1), 44-52. https://doi.org/10.7779/JKSNT.2014.34.1.44
- Li, Z., Gao, P., Zhao, D. and Liu, J. (2017). Fault diagnosis and location of the aero-engine hydraulic pipeline based on Kalman filter, AIME, 9(12), 1687814017742811. https://doi.org/10.1177/1687814017742811
- Liang, J. and Sun, S. (2000). Site effects on seismic behavior of pipelines: a review, J. Press. Vessel. Technol., 122(4), 469-475. https://doi.org/10.1115/1.1285974
- Liu, E., Wang, X., Zhao, W., Su, Z. and Chen, Q. (2020). Analysis and research on pipeline vibration of a natural gas compressor station and vibration reduction measures, Energy Fuel, 35(1), 479-492.
- Marmarokopos, K., Doukakis, D., Frantziskonis, G. and Avlonitis, M. (2018). Leak detection in plastic water supply pipes with a high signal-to-noise ratio accelerometer, Meas. Control, 51(1-2), 27-37. https://doi.org/10.1177/0020294018758526
- Martin, A. (2016). Acoustic Emissions and Response for Detection and Monitoring of Flow-accelerated Corrosion, Master's Thesis, University of New Brunswick.
- Martini, A., Rivola, A. and Troncossi, M. (2018). Autocorrelation analysis of vibro-acoustic signals measured in a test field for water leak detection, Appl. Sci., 8(12), 2450. https://doi.org/10.3390/app8122450
- Martini, A., Troncossi, M., Rivola, A. and Nascetti, D. (2014). Preliminary investigations on automatic detection of leaks in water distribution networks by means of vibration monitoring. Advances in condition monitoring of machinery in non-stationary operations, 535-544.
- Mitchell, J.S. (2007). From vibration measurements to condition-based maintenance, Sound and vibration, 41(1), 62-79.
- Mustapha, S., Braytee, A. and Ye, L. (2017). "Detection of surface cracking in steel pipes based on vibration data using a multi-class support vector machine classifier", Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017, SPIE, Portland, USA.
- Okosun, F., Cahill, P., Hazra, B. and Pakrashi, V. (2019). Vibration-based leak detection and monitoring of water pipes using output-only piezoelectric sensors, Eur. Phys. J. Spec. Top., 228(7), 1659-1675. https://doi.org/10.1140/epjst/e2019-800150-6
- PAHO and WHO. (2002). Health in the Americas. PAHO.
- Pargen, S., Magerstaedt, M., Larink, D., Monster, T. and Rentmeister, N. (2016). "Pipeline Strain and Vibration Monitoring by Smart Materials", International Pipeline Conference, American Society of Mechanical Engineers, Calgary, Canada.
- Park, C.S., Lee, S.H. and Yoon, D.J. (2021). Enhancing impact localization from fluid-pipe coupled vibration under noisy environment, Appl. Sci, 11(9), 4197. https://doi.org/10.3390/app11094197
- Park, J., Choi, J.S., Kim, K., Yoon, Y. and Park, J.H. (2020). A review on recent advances in water and wastewater treatment facilities management for earthquake disaster response, J Korean Soc. Water Wastewater, 34(1), 9-21. https://doi.org/10.11001/jksww.2020.34.1.009
- Park, M.J. and Kim, Y. (2020). A basic study on structural health monitoring using the Kalman filter, J. Soc. Nav. Archit. Korea, 57(3), 175-181. https://doi.org/10.3744/SNAK.2020.57.3.175
- Park, S., Kwak, P., Lee, H. and Choi, C. (2017). Methodology of Displacement Detection for Water Supply Pipeline by IMU Sensors, Int. J. Appl. Eng. Res., 12(20), 9914-9918.
- Power-mi. https://power-mi.com/content/seismic-velocitytransducers (March 03, 2021).
- Qiao, S., Torkamani-Azar, M., Salama, P. and Yoshida, K. (2012). Stationary wavelet transform and higher order statistical analyses of intrafascicular nerve recordings, J. Neural Eng., 9(5), 056014. https://doi.org/10.1088/1741-2560/9/5/056014
- Rizzo, P. (2010). Water and wastewater pipe nondestructive evaluation and health monitoring: a review, Adv. Civ. Eng., 2010. 13
- Rossman (2000). Epanet 2. User's Manual, Water Supply and Water Resources Division National Risk Management Research Laboratory Cincinnati, OH, 45268:200.
- Scheffer, C. and Girdhar, P. (2004). Practical machinery vibration analysis and predictive maintenance. Elsevier.
- Sejdic, E., Djurovic, I. and Jiang, J. (2009). Time-frequency feature representation using energy concentration: An overview of recent advances, Digit. Signal Process., 19(1), 153-183. https://doi.org/10.1016/j.dsp.2007.12.004
- Shinozuka, M., Chou, P.H., Kim, S., Kim, H.R., Yoon, E., Mustafa, H., Karmakar, D. and Pul, S. (2010). "Nondestructive monitoring of a pipe network using a MEMS-based wireless network", SPIE, International Society for Optics and Photonics.
- Shinozuka, M., Lee, S., Kim, S. and Chou, P.H. (2011). "Lessons from two field tests on pipeline damage detection using acceleration measurement", Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2011, International Society for Optics and Photonics, San diego, USA.
- Spanos, P., Giaralis, A. and Politis, N. (2007). Time-frequency representation of earthquake accelerograms and inelastic structural response records using the adaptive chirplet decomposition and empirical mode decomposition, Soil Dyn. Earthq. Eng., 27(7), 675-689. https://doi.org/10.1016/j.soildyn.2006.11.007
- Suh, J.S. (2014). A study on the measurement of the pipeline displacement vibration using accelerometers, Korean Soc. Noise Vib. Eng., 24(6), 476-482. https://doi.org/10.5050/KSNVE.2014.24.6.476
- Toh, G. and Park, J. (2020). Review of vibration-based structural health monitoring using deep learning, Appl. Sci., 10(5), 1680. https://doi.org/10.3390/app10051680
- Tushar, C., Ralish, R., Rajesh, M., Manikandan, M., Rajapandi, R., Kar, V. and Jayakrishna, K. (2019). Maintenance and monitoring of composites, Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Elsevier, 129-151.
- Widodo, A. and Yang, B.S. (2007). Support vector machine in machine condition monitoring and fault diagnosis, Mech. Syst. Signal Process., 21(6), 2560-2574. https://doi.org/10.1016/j.ymssp.2006.12.007
- Wood, D. (1995). KYPipe reference manual, Civil Engineering Software Center, University of Kentucky, Lexington, KY, USA.
- Wu, M. and Smyth, A.W. (2007). Application of the unscented Kalman filter for real-time nonlinear structural system identification, Struct. Control Health Monit, 14(7), 971-990. https://doi.org/10.1002/stc.186
- Yoo, D.G., Jung, D., Kang, D., Kim, J.H. and Lansey, K. (2016). Seismic hazard assessment model for urban water supply networks, J. Water Res. Plann. Manag. 142(2), 04015055. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000584
- Yoo, D.G., Kang, D., Jun, H. and Kim, J.H. (2014). Rehabilitation priority determination of water pipes based on hydraulic importance, Water, 6(12), 3864-3887. https://doi.org/10.3390/w6123864
- Yun, C.B. and Min, J. (2011). Smart sensing, monitoring, and damage detection for civil infrastructures, KSCE J. Civ. Eng., 15(1), 1-14. https://doi.org/10.1007/s12205-011-0001-y
- Zhang, L., Lin, J., Liu, B., Zhang, Z., Yan, X. and Wei, M. (2019). A review on deep learning applications in prognostics and health management, Ieee Access, 7, 162415-162438. https://doi.org/10.1109/access.2019.2950985