• Title/Summary/Keyword: structural safety and serviceability

Search Result 131, Processing Time 0.03 seconds

A Study on the Determination of Prestressing Force Considering Frictional Loss in Prestressed Concrete Structures (프리스트레스 콘크리트 구조물의 마찰손실을 고려한 긴장력 산정에 관한 연구)

  • 조병완;이재형;태기호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.645-650
    • /
    • 2000
  • In the prestressed concrete structures, the effective prestressing force of tendon is basically most important item for structural safety and serviceability. The frictional loss is one of the major items for determinating the effective prestressing force and depend on the construction accuracy of the structures. In this thesis, it will be analyzed and found through measured hydraulic jack pressure, tendon elongation and prestressing control system that the tendancy of apparent curvature friction coefficient, the ratio of jacking force and required prestressing force, the ratio of initial jacking force and required prestressing force and compatibility of specified friction loss coefficient. The specified control limit for curvature friction coefficient of prestressing control system is about 0.25 and wobble friction coefficient 0.005. Thus, the control limit should be modified according to changed vale of friction coefficient.

  • PDF

Precision Determination of Structure Displacement using LIDAR (라이다를 이용한 구조물 변위의 정밀계측)

  • Lee Hong-Min;Park Hyo-Seon;Lee Im-Pyeong;Lee Sang-Joo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.223-228
    • /
    • 2006
  • Monitoring structures is important to maintain the safety and serviceability of the structures. The maximum displacement in the structure should be precisely and frequently monitored because it is a direct assessment index indicating its stiffness. However, no practical method has been developed to monitor such displacement precisely, particularly for high-rise buildings and long span bridges because they cannot be easily accessible. To overcome such difficult accessibility, we propose to use a LIDAR system that remotely samples the surface of an object using laser pulses and generates the coordinates of numerous points on the surface. By analyzing the LIDAR points sampled from the surfaces of a deformed structure, we can precisely determine the displacement of the structure. In this study, we thus develop a novel method based the LIDAR system and perform an indoor experiment to prove its performance. This experimental results strongly supports that the displacement measurement using the LIDAR system are enough accurate to be used for structural analyses.

  • PDF

Nonlinear first ply failure analysis of composite skewed hypar shells using FEM

  • Ghosh, Arghya;Chakravorty, Dipankar
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.81-94
    • /
    • 2018
  • This paper uses the finite element method (FEM) considering geometrically nonlinear strains to study the first ply failure of laminated composite skewed hypar shell roofs through well-established failure criteria along with the serviceability criterion of deflection. Apart from validating the approach through solution of benchmark problems, skewed hypars with different practical parametric variations are studied for failure loads and tendencies. First ply failure zones are also identified to suggest design and non-destructive monitoring guidelines to the practising engineers. Recommendation tables regarding the design approaches to be adopted in specific cases and factor of safety values needed to be imposed on first ply failure load values for varying shell curvatures are also suggested in this paper. Providing practical inputs to design engineers is the main achievement of the present study.

Comparative Study of Tuned Mass Damper and Tuned Liquid Column Damper for Response Control of Building structures (동조질량감쇠기와 동조액체기둥감쇠기의 건물응답의 제어성능 비교연구)

  • 김홍진;김형섭;민경원;오정근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.427-434
    • /
    • 2003
  • In this study, the control performances of Tuned Mass Damper (TMD) and Tuned Liquid Column Damper (TLCD) are evaluated and compared for seismically excited structures. Results show that TLCD is more effective than TMD for interstory drift control while TLCD is as effective as TMD for acceleration control. In special, it is shown that interstory drifts are maximally controlled in lower floors and accelerations are reduced most in upper floors. This indicates that TLCD is an effective controller for earthquake-induced structures in terms of structural safety as well as serviceability.

  • PDF

Reliability-based Design Criteria for Reinforced Concrete Structures Based on Partial and Combined Resistance Factor Formats (부분(部分) 및 조합저항계수형식(組合抵抗係數形式)에 의한 철근(鐵筋)콘크리트구조(構造)의 신뢰성(信賴性) 계기준(計基準))

  • Oh, Byung Hwan;Lee, Seong Lo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.87-97
    • /
    • 1990
  • There is the need to balance safety, economy and serviceability in all phases of society problems. This is especially true in structural code formulation. where a framework is established by which practicing structural engineers can be assured of designing structures that reasonably meet the above three objectives. The existing design codes, which are generally based on the structural theory and certain engineering experience, do not realistically consider the uncertainties of loads and resistances and the basic reliability concepts. The purpose of the present study is therefore to develop the realistic reliability-based design criteria to secure adequate safety arid reliability, and to derive the models for partial and combined resistance factor formats. To this end, the reliability levels of our existing design code for concrete structures are first evaluated and the target reliabilities are determined, the new code formats are evolved from these target reliabilities. The present study indicates that the proposed formats exhibit relatively-uniform reliability and reasonably take into account the different material characteristics of concrete and steel in concrete structures.

  • PDF

Reliability Analysis on GFRP Bridge Decks for Target Reliability (목표 신뢰성에 대한 GFRP 교량 바닥판의 구조 신뢰성 해석)

  • Kim, Sang-Jin;Kim, Jin-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.47-54
    • /
    • 2007
  • Bridge decks are one of the main structural components that are most suitable for utilizing the advantages of FRP materials due to the high strength weight ratio of FRP materials. Design codes for the design of FRP bridge decks should be established to apply FRP materials for bridge decks effectively. At present, design codes are relatively well established for the use of FRP materials as reinforcements in concrete structures. However, design codes have not yet been provided for the structures made of FRP as a main construction material. In this study, for the purpose of preparing design code provisions, reliability analyses were performed to evaluate target level of safety and serviceability on GFRP decks. Based on the results, several guidelines for the development of design codes are suggested.

  • PDF

Safety Evaluation of the Precast Half Deck Pannel Joints Reinforced by Connection Rebar (이음철근이 보강된 반단면 프리캐스트 판넬 이음부의 강도 안전성 평가)

  • Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.2
    • /
    • pp.40-47
    • /
    • 2019
  • The Half-depth precast deck is a structural system that utilizes pre-cast panels pre-built at the factory as formwork at the construction stage and as a major structural member at the same time after completion. These systems have joints between segments, and the detail and performance of the joints are factors that have a very large impact on the quality, such as the constructability and durability of the bridge decks. In this study, strength performance evaluation was performed for improved joints using connecting rebar by experimental method. Static loading tests were conducted on the test specimen with improved joint, those with existing joint and those without joint. The test results of the specimens were compared to each other, and the flexural strength required by the design was compared. The flexural strength required in the design was presented by finite element analysis. It has been shown that the flexural strength of the specimens with joints were more than twice that required by the design. But the flexural strength of the specimen with existing joint was about 84% of that without joint. The flexural strength of the specimen with improved joints was a nearly similar degree of that compared to the specimen without joint. And a comparison of the moment-deflection relationship curves of the two specimens also shows a very similar flexural behavior. It is confirmed that improved joint has sufficient flexural strength. In addition to strength, the bridge decks require serviceability, such as deflection and cracking, and in particular, fatigue resistance due to repetitive live loads is an important performance factor. Therefore, further verification studies are required.

Reliability Analysis of Steel Fiber Reinforced Concrete Beams (강섬유 보강 철근콘크리트보의 신뢰성 해석)

  • 유한신;곽계환;장화섭
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.479-486
    • /
    • 2004
  • The purpose of this study is to practical use with increase safety, usablility and economical. In this study, the property of fatigue behavior was tested by comparing reinforced concrete and steel fiber reinforced concrete. The basic test, the static test and fatigue test were used as the research methods. Basic on the test, the material compressive strength test and split tensile strength test ware conducted 7 days and 28 days after the concrete was poured. In the static test, there ware four types of experimental variables of the steel fiber mixing ratio : 0.00%, 0.75%, 1.00%, and 1.25%. The ultimate load initial diagonal tension crack, and initial load of flexural cracking were all observed by static test. A methodology for the probabilistic assement of steel fiber reinforced concrete(SFRC) which takes into account material variability, confinement model uncertainty and the uncertainty in local and globa failure criteria is applied for the derivation of vulnerability curves for the serviceability and ultimate limit states, the reliability of SFRC using the proposed practical linear limit state model is evaluated by using the AFOSM(Advanced First Order Second Moment) method and MCS(monte-Calrosimulation) method.

  • PDF

Effects of taper and set-back on wind force and wind-induced response of tall buildings

  • Kim, Yongchul;Kanda, Jun
    • Wind and Structures
    • /
    • v.13 no.6
    • /
    • pp.499-517
    • /
    • 2010
  • Advances in structural materials and construction methods have resulted in flexible and light tall buildings, making an assessment of structural safety during strong wind and serviceability/habitability during comparable medium/weak wind important design criteria. So far, lots of studies on suppressing the wind-induced responses have been carried out for tall buildings with aerodynamic modification. Most of the studies on aerodynamic modification have forced on the corner modification, while the studies on taper and set-back are limited. Changes of sectional shape through taper and set-back can modify the flow pattern around the models, encouraging more 3-dimensionalities, which results in reducing the wind-induced excitations. This paper discusses the characteristics of overturning moments and wind-induced responses of the tall buildings with height variations. The reduction of mean along-wind and fluctuating across-wind overturning moments are apparent in the suburban area than in urban area. A series of the response analyses, the rms displacement responses of the tall buildings with height variations are reduced greatly, while the rms acceleration responses are not necessarily reduced, showing dependences on wind direction.

A multi-parameter optimization technique for prestressed concrete cable-stayed bridges considering prestress in girder

  • Gao, Qiong;Yang, Meng-Gang;Qiao, Jian-Dong
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.567-577
    • /
    • 2017
  • The traditional design procedure of a prestressed concrete (PC) cable-stayed bridge is complex and time-consuming. The designers have to repeatedly modify the configuration of the large number of design parameters to obtain a feasible design scheme which maybe not an economical design. In order to efficiently achieve an optimum design for PC cable-stayed bridges, a multi-parameter optimization technique is proposed. In this optimization technique, the number of prestressing tendons in girder is firstly set as one of design variables, as well as cable forces, cable areas and cross-section sizes of the girders and the towers. The stress and displacement constraints are simultaneously utilized to ensure the safety and serviceability of the structure. The target is to obtain the minimum cost design for a PC cable-stayed bridge. Finally, this optimization technique is carried out by a developed PC cable-stayed bridge optimization program involving the interaction of the parameterized automatically modeling program, the finite element structural analysis program and the optimization algorithm. A low-pylon PC cable-stayed bridge is selected as the example to test the proposed optimization technique. The optimum result verifies the capability and efficiency of the optimization technique, and the significance to optimize the number of prestressing tendons in the girder. The optimum design scheme obtained by the application can achieve a 24.03% reduction in cost, compared with the initial design.