• Title/Summary/Keyword: structural safety and serviceability

Search Result 131, Processing Time 0.023 seconds

Flexural Behavior of PSC Beam Using High Strength Concrete (고강도 PSC BEAM 교량의 휨거동)

  • 정원기;이형준;이규정;윤석구;한승환;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.706-711
    • /
    • 1998
  • Structural tests of the PSC Beam bridge using high strength concrete, concrete compressive strength 700kg/$\textrm{cm}^2$, are conducted for the application including durability and serviceability of the bridge. Current design safety factors with respect to the jacking force and the service design load DB-24 are applied to the design of the bridge. Concrete compressive strength 700kg/$\textrm{cm}^2$, girder depth 2.3m, girder space 3.2m, span length 20m, and slab thickness 27cm are selected for the bridge test. The Bulb-Tee section of the girders is applied instead of I section because it is well known more stable to the longer span(40m). Static load test(4 beams) with composite and non-composite section, and fatigue load test(1 beams) with composite section are conducted. Crack moment, ultimate load, deflections with load steps, and strains of the beam section for those bridges are investigated. The structural test results of the bridges showed a good performance for a safety and a serviceability.

  • PDF

Structural Performance Evaluation of a Precast PSC Curved Girder Bridge Constructed Using Multi-Tasking Formwork

  • Kim, Sung-Jae;Kim, Jang-Ho Jay;Yi, Seong-Tae;Noor, Norhazilan Bin Md;Kim, Sung-Chul
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.1-17
    • /
    • 2016
  • Recently, advanced transit systems are being constructed to reduce traffic congestions in metropolitan areas. For these projects, curved bridges with various curvatures are required. Many curved bridges in the past were constructed using aesthetically unpleasant straight beams with curved slabs or expensive curved steel box girders with curved slabs. Therefore, many recent studies have been performed to develop less expensive and very safe precast prestressed concrete (PSC) curved girder. One method of reducing the construction cost of a PSC curved girder is to use a reusable formwork that can easily be adjusted to change the curvature and length of a girder. A reusable and curvature/dimension adjustable formwork called Multi-tasking formwork is developed for constructing efficient precast PSC curved girders. With the Multi-tasking formwork, two 40 m precast PSC box girders with different curvatures were constructed to build a two-girder curved bridge for a static flexural test to evaluate its safety and serviceability performance. The static flexural test results showed that the initial cracking load was 1400 kN, exceeding the design cracking load of 450 kN. Also, the code allowed deflection of 50 mm occurred at a load of 1800 kN, verifying the safety and serviceability of the precast PSC curved bridge constructed using the multi-tasking formwork.

Structural Characteristics and Field Application of 'Delta Deck' Composite Bridge (복합소재 교량 바닥판 '델타데크'의 구조적 특성과 현장적용)

  • 이성우;박신전;김병석;정규상
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.201-208
    • /
    • 2004
  • To substitute conventional reinforced-concrete bridge deck, glass composite precast bridge deck - Delta Deck/sup TM/, which possesses advantages of light weight, high strength, corrosion resistance and durability, is developed for the DB24 truck load. Pultruded composite bridge deck is designed and fabricated. To verify serviceability and structural safety, finite element analysis, structural testing such as flexural test, local fatigue test, flexural fatigue test and field tests are conducted. In this paper structural characteristics of developed deck and its field application in Korea is presented.

  • PDF

Self Diagnosing Property of Carbon and Glass Hybrid Fiber Materials for Concrete Strengthening (자기진단 재료로서의 콘크리트 보강용 탄소유리복합섬유로드의 적용성 검토)

  • Park, Seok-Kyun;Lee, Byung-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.428-431
    • /
    • 2004
  • Smart structural system is defined as structural system with a certain-level of autonomy relying on the embedded functions of sensors, actuators and processors, that can automatically adjust structural characteristics, in response to the change in external disturbance and environments, toward structural safety and serviceability as well as the extension of structural service life. In this study, carbon and glass hybrid fiber materials were investigated fundamentally for the applicability of self diagnosis in smart concrete structural system as embedded functions of sensors.

  • PDF

Development of Early Evaluation System for Concrete Quality, Construction and Maintenance (콘크리트 품질ㆍ시공ㆍ유지관리의 조기판정시스템 개발)

  • 손용우;이증빈;최미라;박봉수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.517-526
    • /
    • 2004
  • In the resent years, the early evaluation of concrete quality, construction and maintenance has been considered as all is of major concern due to the increase of loading and the degradation of structures related with time. This paper presents evaluation of structural safety performance using measured data of construction, on the basis of a field measurements for the prevention of unreliable concrete works. Measurements analyzed in this paper are early quality condition and performance assessment, serviceability performance by cracks and deflection, rating performance by loading, durability performance by chloride attack and carbonation. Thus, a quantitative assessment model of resistance capacity was developed here to meet the requirement for deteriorated concrete structures. The model focuses on damage mechanical of concrete structures deteriorated by initial damage factors for concrete quality and environment factors such as chloride and carbonation attacks. These results could provide useful information for concrete structures interested in design, construction and maintenance.

  • PDF

Self Diagnosis Monitoring System of Carbon and Glass Hybrid Fiber Materials for Concrete Structures (CFGFRP 복합재료를 이용한 콘크리트 자기진단 모니터링)

  • Park, Seok-Kyun;Kim, Dae-Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.359-362
    • /
    • 2005
  • Self diagnosis monitoring system is defined as concrete structural carbon and glass hybrid fiber materials, in response to the change in external disturbance and environments, toward structural safety and serviceability as well as the extension of structural service life. In this study, carbon and glass hybrid fiber materials were investigated fundamentally for the applicability of self diagnosis in smart concrete structural system as embedded functions of sensors.

  • PDF

The State of Art of Structural Control Systems (토목 구조 제어 시스템의 현황)

  • 김기봉;홍창국
    • Journal of KSNVE
    • /
    • v.3 no.2
    • /
    • pp.127-135
    • /
    • 1993
  • The structural control systems for civil engineering structures have got considerable attention in recent years, since they become effective protective systems. The key idea behind structural control is to keep the response of a structure within certain bounds dictated by serviceability, structural safety, and reliability. Recent activities in control algorithm development and control system design and practical aspects of their applications are sumarized, followed by a discussion on prossible future directions.

  • PDF

Assessment Model for the Safety and Serviceability of Structures using Terrestrial LiDAR (지상라이다를 이용한 구조물의 안전 및 사용성 평가 모델)

  • Lee, Hong-Min;Park, Hyo-Seon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.17-28
    • /
    • 2006
  • Structural health monitoring is important to maintain the safety and serviceability of the structures. The displacement in the structure should be precisely and frequently monitored because it is a direct assessment index indicating its stiffness. However, no practical method has been developed to monitor such displacement precisely, particularly for high-rise buildings and long span bridges because they cannot be easily accessible. To overcome such difficult accessibility, we propose to use a LIDAR system that remotely samples the surface of an object using laser pulses and generates the coordinates of numerous points on the surface. In this study, using terrestrial LiDAR, we develop a novel displacement measuring model for structural health monitoring and perform an indoor experiment to prove its performance.

Evaluation of Structural Performance of Unhangak in Suwon Hwaryeongjeon by Three-Dimensional Structural Analysis (3차원 구조해석에 의한 수원 화령전 운한각의 구조성능 평가)

  • Yeong-Min Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.197-204
    • /
    • 2024
  • In this paper, the structural performance of Suwon Hwaryeongjeon Unhangak, a representative traditional timber structure in the late Joseon Dynasty, was evaluated. Based on the structure composition of Unhangak, an analysis model was elaborately constructed with Midas Gen, a 3-dimensional structural analysis software. The safety and serviceability of major structural members were evaluated by static analysis, and the dynamic behavior characteristics were evaluated by eigenvalue analysis. Most of the members satisfied the safety and serviceability standards with a margin; however, the bending stress ratio in the oemogdori exceeds the standard by 20.7%, so it is considered that long-term monitoring is needed for this member. The natural period of Unhangak is 1.079 seconds, which is slightly longer than traditional timber buildings of similar scale. In particular, it is analyzed that torsional movement occurred in the secondary mode due to the influence of the rear masonry firewall.