• Title/Summary/Keyword: structural performance test

Search Result 2,183, Processing Time 0.026 seconds

Structural Performance of a New Truss Deckplate System with UHPC Infilled Top Chords in Construction Stage (UHPC 충전형 상현재를 활용한 트러스 데크플레이트 시스템 시공단계 구조성능 평가)

  • Son, Hong-Jun;Kim, Young-Ho;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.137-144
    • /
    • 2020
  • In this study, we propose a new truss deckplate system, which does not require temporary floor supports during construction, with ultra-high-performance concrete (UHPC) infilled top bars. The increased stiffness and strength of the proposed system were well retained as compared to those of the existing truss deckplate systems, thereby resulting in the reduction of maximum deflection at the span center. Four-point bending tests were performed on five specimens with a net span of 4.6 m to evaluate the structural performance of proposed system in the construction stage. In addition, the load-deflection curve was plotted for each specimen, and the effects of test parameters were analyzed. Further, a rigorous nonlinear three-dimensional finite element analysis was performed, and its results were compared with the test results. From the results, it was observed that the test specimens of the proposed system exhibited superior performance as compared to those of the existing one and also satisfied the serviceability requirement during construction provided by the Korea Building Code 2016.

High-temperature Structural Analysis of Small-scale Prototype of Process Heat Exchanger (III) (공정열교환기 소형 시제품에 대한 고온구조해석(III))

  • Song, Kee-Nam;Lee, Heong-Yeon;Kim, Chan-Soo;Hong, Seong-Duk;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.191-200
    • /
    • 2011
  • A PHE (Process Heat Exchanger) is a key component of nuclear hydrogen system for massive production of hydrogen; the PHE transfers the very high temperature heat ($950^{\circ}C$) generated from the VHTR (Very High Temperature Reactor) to a chemical reaction. The Korea Atomic Energy Research Institute developed a small-scale gas loop for testing the performance of VHTR components and manufactured a modified PHE prototype for carrying out the testing in the gas loop. In this study, as a part of the evaluation of the high-temperature structural integrity of the modified PHE prototype which is scheduled to test in the gas loop, we carried out high-temperature structural analysis modeling, macroscopic thermal and structural analysis of the PHE prototype under the gas loop test conditions as a precedent study before carrying out the performance test in the gas loop. The results obtained in this study will be used to design the performance test setup for the modified PHE prototype.

Experimental Structural Performance Evaluation of Precast-Buckling Restrained Brace Reinforced With Engineering Plastics (공업용 플라스틱으로 보강된 비좌굴가새의 실험적 구조성능평가)

  • Kim, Yu-Seong;Kim, Gee-Chul;Kang, Joo-Won;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.3
    • /
    • pp.43-52
    • /
    • 2020
  • In this study, the Buckling restrained braces reinforced with engineering plastics that can compensate for the disadvantages in the manufacturing process of the existing buckling restrained brace. The proposed PC-BRB was fabricated to evaluate the reinforcement effect by carrying out a structural performance test and a full-scale two-layer frame test through cyclic loading test. As a result of PC-BRB's incremental and cyclic loading test, stable hysteresis behavior was achieved within the target displacement, and the compressive strength adjustment coefficient satisfied the recommendation. As a result of the real frame experiment, the strength of the reinforced specimen increased compared to the unreinforced specimen, and the ductility and energy dissipation increased.

A Study on the Design and Performance Test of Side Thruster (사이드 스러스터 설계 및 성능평가에 관한 연구)

  • Kim, Hyeong-Min;Kim, Lae-Sung;Cho, Sung-Hyun;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.1-6
    • /
    • 2017
  • In this paper, we present a study concerning the design of a 400 N class side thruster for small ships. The side thrusters used in Korea are imported from abroad. The performance and durability of the imported products employed in Korea are not adequate, therefore the side thrusters which will be suitable for Korean domestic needs to be re-designed. The strength calculation of the side thruster was performed by KS standard. Strength calculation and design were made to meet design requirements. Structural analysis and safety factor analysis were carried out to confirm the validity of strength calculations and design. After manufacturing the bevel gear, a back lash test was conducted. We also conducted a no-load test, a rated load, and an overload test for a performance test and a durability test of the design while satisfying the design conditions.

Strength Assessment of High-Pressure Ball Valve for Topside Process Unit (해양플랜트 탑사이드용 고압 볼밸브에 대한 구조 안전성 평가)

  • Oh, Jeong-Sik;Kim, Yooil;Jeong, Nakshin;Kim, Sangmyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.100-108
    • /
    • 2016
  • A high-pressure ball valve was developed, and both the structural strength and sealing performance were assessed based on a nonlinear finite element analysis. Different parts were modeled with solid elements and assembled, taking into account both contact and sliding effects. Three different loading scenarios were analyzed, including a high-pressure closure test and fire and shell test conditions. The structural safety of each part was checked under each loading condition, and the sealing performance was also investigated to validate the performance of the valve.

Impact of composite materials on performance of reinforced concrete panels

  • Mazek, Sherif A.;Mostafa, Ashraf A.
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.767-783
    • /
    • 2014
  • The use of composite materials to strengthen reinforced concrete (RC) structures against blast terror has great interests from engineering experts in structural retrofitting. The composite materials used in this study are rigid polyurethane foam (RPF) and aluminum foam (ALF). The aim of this study is to use the RPF and the ALF to strengthen the RC panels under blast load. The RC panel is considered to study the RPF and the ALF as structural retrofitting. Field blast test is conducted. The finite element analysis (FEA) is also used to model the RC panel under shock wave. The RC panel performance is studied based on detonating different TNT explosive charges. There is a good agreement between the results obtained by both the field blast test and the proposed numerical model. The composite materials improve the RC panel performance under the blast wave propagation.

Seismic performance evaluations of modular house having 4-clip fastening method (4-클립 체결방식을 갖는 모듈러 하우스의 내진성능평가)

  • Lim, Hyeon-jin;Cho, Chang-Geun;Shin, Jung-Kang;Lee, Sun-Joo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.41-48
    • /
    • 2022
  • The purpose of this study is to evaluate seismic performances of a modular house system developed by a simple 4-clip fastening method and double metal assembly made of lightweight metals. In order to evaluate structural and non-structural seismic performances of the system. Shaking table test was carried out with full-scale modular units, and a nonlinear pushover analysis was performed to obtain suitable seismic responses for story drifts, displacements, force resistances and dynamic properties of the system. Through 3D analysis and shaking table test, the current method of lightweight modular metal unit assembly and systems with seismic performance of a 4-clip fastening type modular house were demonstrated safe and effective to seismic design.

Evaluation on Flexural Performance of Steel Plate Reinforced GLT Beams (강판 보강 집성재 보의 휨성능 평가 연구)

  • Park, Keum-Sung;Lee, Sang-Sup;Kwak, Myong-Keun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.39-49
    • /
    • 2020
  • In this study, we will develop a hybrid cross-sectional shape of steel inserted type glued-laminated timber that can improve the strength of structural glued-laminated timber and maximize the ductility by using steel plate with excellent tensile and deformation ability. A total of three specimens were fabricated and the flexural performance test was carried out to evaluate the structural performance of the steel inserted type glued-laminated timber. In order to compare the effect of steel inserted glued-laminated timber, one structural glued-laminated timber test specimen composed of pure wood was manufactured. In addition, in order to evaluate the adhesion performance of the steel inserted, one each of a screw joint test specimen and a polyurethane joint test specimen was prepared. As a result, all the specimens showed the initial crack in the finger joint near the force point. This has been shown to be a cause of crack diffusion and strength degradation. The use of finger joints in the maximum moment section is considered to affect the strength and ductility of the glued-laminated timber beam. Polyurethane-adhesive steel inserted glued-laminated timber showed fully-composite behavior with little horizontal separation between the steel plate and glued-laminated timber until the maximum load was reached. This method has been shown to exhibit sufficient retention bending performance.

A Study on the Comparison of Structural Performance Test and Analysis for Design Verification of Bimodal Tram Vehicle Made of Sandwich Composites (샌드위치 복합재 적용 바이모달 트램 차체의 설계검증을 위한 구조 성능 시험 및 해석적 비교 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Jeong, Jong-Cheol
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.518-525
    • /
    • 2009
  • This paper describes the evaluation of structural performance test and finite element analysis to verify the design of Bimodal Tram made of sandwich composites. The sandwich composite applied to vehicle structure was composed of a aluminum honeycomb core and WR580/NF4000 glass fabric/epoxy laminate composite facesheet. The load tests of vehicle structure were conducted for vertical load, compressive load, torsion and modal analysis according to JlS E 7105. The structural Integrity of vehicle was evaluated by the measurement of displacement, stress and natural frequency obtained from dial gauge, strain gauge and gravity sensor, respectively. And finite element analysis using ANSYS v11.0 was done to compare with structural test. The results showed that the displacement, stress and natural frequency were in an good agreement with those of structural analysis using the proposed finite element models.

An Experimental Study on Flexural Performance of Precast Concrete Modular Beam Systems (프리캐스트 콘크리트 모듈러 보 시스템의 휨 성능에 대한 실험적 연구)

  • Ro, Kyong Min;Cho, Chang Geun;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.69-76
    • /
    • 2021
  • Precast concrete (PC) modules have been increased its use in modular buildings due to their better seismic performance than steel modules. The main issue of the PC module is to ensure structural performance with appropriate connection methods. This study proposed a PC modular beam system for simple construction and improved structural and splicing performance. This modular system consisted of modules with steel plates inserted, and it is easy to construct by bolted connection. The steel plates play the role of tensile rebar and stirrup, which has the advantage of structural performance. The structural performance of the proposed PC modular beam system was evaluated by flexural test on one reinforced concrete (RC) beam specimen consisting of a monolithic, and two PC specimens with the proposed PC modular beam system. The results demonstrated that the proposed PC modular beam system achieved approximately 86% of the structural performance compared to the RC monolithic specimen, with similar ductility of approximately 1.06 fold greater.