• 제목/요약/키워드: structural mechanism

검색결과 1,719건 처리시간 0.028초

기업 간 협업 네트워크의 창발 : 관계 역량을 중심으로 (Emergence of Inter-organizational Collaboration Networks : Relational Capability Perspective)

  • 박철순
    • 한국경영과학회지
    • /
    • 제40권4호
    • /
    • pp.1-18
    • /
    • 2015
  • This paper proposes relational capability as a main driver of constructing inter-organizational collaboration networks. Based on social network theory and relational view literature, three components of relational capability are constructed and implemented by an agent-based model. The components include organizational capability, structural capability, and trust between a partner and a focal firm. These three components are updated by two micro mechanisms: structural mechanism and relational mechanism. Structural mechanism is a feedback loop in which the relational capability increases structural capability and vice versa. Relational mechanism is a learning-by-doing process in which a focal firm experiences success or failure of collaboration and the experience increases or decreases cumulative trust in a partner firm. Result of agent-based simulation shows that a collaboration network emerges through interactions of firm's relational capabilities and the characteristics of emerged networks vary with the contribution of structural capability and trust to relational capability. Specifically, in case structural capability contributes more to relational capability, the average degree centrality and collaboration proportion increases as time passes and enters into an equilibrium state. In that case, almost every firms participated in the network collaborates each other so that the emerged network becomes highly cohesive. In case trust contributes more to relational capability, the results are reversed. In an equilibrium state, the balance of contribution between structural capability and trust makes an emerged network larger and maximizes average degree centrality of the network.

수정된 King-post mechanism을 이용한 교량 구조물의 최적능동제어 (Optimal Active Control of Bridges using Modified King-post Mechanism)

  • 김준형;정길호;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.103-110
    • /
    • 1995
  • This Paper develops a new control system to reduce the vibration of bridges using King-post mechanism. The optimal active control theory is used in the control system. The positions of post and roller in the King-post mechanism are important factors, since the vibration of bridges is very sensitive to their variations. To demonstrate the efficiency of the proposed control mechanism, a simply supported beam under moving load is considered.

  • PDF

3次元 R-S-S-R 機構의 最適設計 에 관한 硏究 (A Study on the Optimal Design of a R-S-S-R Three Dimensional Mechanism)

  • 김호룡;김경률
    • 대한기계학회논문집
    • /
    • 제9권4호
    • /
    • pp.528-538
    • /
    • 1985
  • 본 논문에서는 crank-rocker 운동에 의해 함수 y=sinx를 만족시키는 3차원 R-S-S-R 함수발생기구를 FDP(Fletcher-Davidon-Powell) 최적화 기법을 응용, 운동학적 으로 무오차점을 고려, 설계하려고 한다. 한편 상기와 같이 최적 설계된 기구의 실 제 운동과 요구된 운동과의 오차분석 및 운동 가능성 여부(mobility check)를 검토하 였으며 FDP 최적화 기법에 필요한 벌칙함수(penalty function)로써 Fiacco-McCormic- krhk Powell의 벌칙함수를 사용하여 그 결과를 비교하였다.

Structural flexibility of Escherichia coli IscU, the iron-sulfur cluster scaffold protein

  • Kim, Bokyung;Kim, Jin Hae
    • 한국자기공명학회논문지
    • /
    • 제24권3호
    • /
    • pp.86-90
    • /
    • 2020
  • Iron-sulfur (Fe-S) clusters are one of the most ancient yet essential cofactors mediating various essential biological processes. In prokaryotes, Fe-S clusters are generated via several distinctive biogenesis mechanisms, among which the ISC (Iron-Sulfur Cluster) mechanism plays a house-keeping role to satisfy cellular needs for Fe-S clusters. The Escherichia coli ISC mechanism is maintained by several essential protein factors, whose structural characterization has been of great interest to reveal mechanistic details of the Fe-S cluster biogenesis mechanisms. In particular, nuclear magnetic resonance (NMR) spectroscopic approaches have contributed much to elucidate dynamic features not only in the structural states of the protein components but also in the interaction between them. The present minireview discusses recent advances in elucidating structural features of IscU, the key player in the E. coli ISC mechanism. IscU accommodates exceptional structural flexibility for its versatile activities, for which NMR spectroscopy was particularly successful. We expect that understanding to the structural diversity of IscU provides critical insight to appreciate functional versatility of the Fe-S cluster biogenesis mechanism.

일반교량 하부구조의 내진설계 (Earthquake Resistance Design for a Typical Bridge Substructure)

  • 국승규
    • 한국전산구조공학회논문집
    • /
    • 제24권3호
    • /
    • pp.283-288
    • /
    • 2011
  • 내진설계에서 설계자가 제시해야 하는 사항은 구조물의 항복과정이 원칙적으로 연성파괴메카니즘으로 구성되는 것이다. 일반교량의 연성파괴메카니즘은 연결부분과 교각기둥 두 구조부재 중 교각기둥이 먼저 항복하도록 설계되어야 한다. 그러나 불필요하게 강성이 큰 하부구조가 사용되는 국내의 설계관행에 의해 지진하중은 크게 발생하게 되므로 연성파괴메카니즘을 확보하기가 어렵다. 이러한 문제는 내진설계가 기본설계 단계에서 수행되지 않아 발생한다. 이 연구에서는 일반교량을 해석대상 교량으로 선정하고 기본설계 단계에서 연결부분과 하부구조의 설계강도를 결정하는 내진설계를 수행하여, 이러한 설계방식으로 타설계에서 결정되는 구조부재를 변경하지 않아도 연성파괴메카니즘을 확보할 수 있다는 것을 제시하였다.

Load Transfer Mechanism of a Hybrid Beam-Column Connection System with Structural Tees

  • Kim, Sang-Sik;Choi, Kwang-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.199-205
    • /
    • 2006
  • The composite frame system with reinforced concrete column and steel beam can be improved in its structural efficiency by complementing the shortcomings of the two systems. The system, however, has many inherent problems in practical design and construction process due to the dissimilarities of the materials. Considering these circumstance, this research aims for the development of a composite structural system which connects the steel beams to the R/C columns with higher structural safety and economy. Basically, the proposed connection system is composed of four split tees, structural angles reinforced by a stiffener, high strength steel rods, connecting plates and shear plates. Structural tests have been carried out to investigate the moment transfer mechanism 1Tom the beam flange to steel rods or connecting plates through the structural angle reinforced by a stiffener. The four prototype specimens have been tested until the flange of the beam reached a plastic state. The test results indicated that no distinct material dissimilarities between concrete and steel have been detected for the proposed hybrid beam-column connection system and that the stress transfer through the structural angle between the beam flange and steel rods or connecting plates was very encouraging.

Effects of Environmental Uncertainty on Interfirm Governance Mechanisms: The Moderating Role of Structural Holes

  • KIM, Minjung;KIM, Taewan
    • 산경연구논집
    • /
    • 제13권9호
    • /
    • pp.11-26
    • /
    • 2022
  • Purpose: Manufacturers rely on interfirm governance mechanisms to reduce the risks inherent in uncertain environments; however, it is unclear which governance mechanisms are developed to manage relationships with suppliers. This study sought to enhance knowledge of how environmental uncertainty affects interfirm governance mechanisms under conditions reflecting varying levels of structural holes. To this end, the study investigated the relationships between manufacturers and major first-tier and sub-suppliers. In particular, the moderating effect of structural holes is examined. Research design, data and methodology: A questionnaire survey was conducted with a major first-tier supplier of a Korean engineering firm. Proposed hypotheses were tested using structural equation modeling. Results: The results show that while the relationship between environmental uncertainty and unilateral governance is positive but statistically insignificant, with bilateral governance is negative and statistically significant. The study also demonstrates that when structural holes are considered, the effects between environmental uncertainty and governance mechanisms are attenuated. Conclusions: This study suggests some theoretical and managerial contributions between exchange partners, especially, the results suggest that structural holes have a critical competitive advantage in uncertain environments. Therefore, manufacturers should carefully consider how they deal with environmental uncertainty when they make a business decision under structural holes situations.

$Al_2O_3/Ni$ 나노복합분말의 치밀화중 분산상 Ni의 성장기구 (Growth Mechanism of Nickel Nanodispersoids during Consolidation of $Al_2O_3/Ni$ Nanocomposite Powder)

  • 김범성;이재성;오승탁;좌용호
    • 한국분말재료학회지
    • /
    • 제7권4호
    • /
    • pp.237-243
    • /
    • 2000
  • The property and performance of the $Al_2O_3/Ni$ nanocomposites have been known to strongly depend on the structural feature of Ni nanodispersoids which affects considerably the structure of matrix. Such nanodispersoids undergo structural evolution in the process of consolidation. Thus, it is very important to understand the microstructural development of Ni nanodispersoids depending on the structure change of the matrix by consolidation. The present investigation has focused on the growth mechanism of Ni nanodispersoids in the initial stage of sintering. $Al_2O_3/Ni$ powder mixtures were prepared by wet ball milling and hydrogen reduction of $Al_2O_3$ and Ni oxide powders. Microstructural development and the growth mechanism of Ni dispersion during isothermal sintering were investigated depending on the porosity and structure of powder compacts. The growth mechanism of Ni was discussed based upon the reported kinetic mechanisms. It is found that the growth mechanism is closely related to the structural change of the compacts that affect material transport for coarsening. The result revealed that with decreasing porosity by consolidation the growth mechanism of Ni nanoparticles is changed from the migration-coalescence process to the interparticle transport mechanism.

  • PDF

Glass Fiber 배향성이 충격 파괴에 미치는 영향: 사출-구조 연성해석 (Effect of Glass Fiber Orientation on Impact Fracture Properties: Coupled Injection Molding & Structural Analysis)

  • 김웅
    • 소성∙가공
    • /
    • 제32권3호
    • /
    • pp.129-135
    • /
    • 2023
  • The use of engineering plastic products in internal combustion engine and electric cars to improve stiffness and reduce weight is increasing significantly. Among various lightweight materials, engineering plastics have significant advantages such as cost reduction, improved productivity, and weight reduction. In particular, engineering plastics containing glass fibers are used to enhance stiffness. However, the stiffness of glass fibers can increase or decrease depending on their orientation. Before developing plastic products, optimal designs are determined through injection molding and structural analysis to enhance product reliability. However, reliable analysis of products with variable stiffnesses caused by anisotropy cannot be achieved via the conventional isotropic structural analysis, which does not consider anisotropy. Therefore, based on the previously reported study "the Effect of Impacted Fracture in Glass Fiber Orientation with Injection Molding & Structural Coupled Analysis," this study aims to investigate the structural analysis and degradation mechanisms of various polymers. In particular, this study elucidates the actual mechanism of plastic fracture by analyzing various fracture conditions and their corresponding simulations. Furthermore, the objective of this study is to apply the injection molding and structural coupled analysis mechanism to develop engineering plastic products containing glass fibers. In addition, the study aims to apply and improve the plastic fracture mechanism in actual products by exploring anisotropy and stiffness reduction owing to the unfilled polymer weld line.

팽윤 전분을 기질로 한 Cyclodextrin Glucanotransferase의 Cyclodextrin 생성반응 기작 (Reaction Mechanixm of Cyclodextrin formation from Swollen Extrusion Starch by cyclocextrin Glucanotransferase)

  • 이용현;조명진;박동찬
    • 한국미생물·생명공학회지
    • /
    • 제23권4호
    • /
    • pp.416-424
    • /
    • 1995
  • Mechanism of the cyclodextrin (CD) production reaction by cyclodextrin glucanotransferase (CGTase) using swollen extrusion starch as substrate was investigated emphasizing the structural features of starch granule. The degree of gelatinization was identified to be the most representative structural characteristic of swollen starch. The most suitable degree of gelatinization of swollen starch for CD production was around 63.52%. The structural transformation of starch granule during enzyme reaction was also followed by measuring the changes of the degree of gelatinization, microcrystallinity, and accessible and inaccessible portion to CGTase action of residual swollen starch. The adsorption phenomenon of CGTase to swollen starch was also examined under various conditions. The inhibition mechanism of CGTase by various CDs was identified to be competitive, most severely by a-CD. The mechanism elucidated will be used for development of a kinetic model describes CD production reaction in heterogeneous enzyme reaction system utilizing swollen extrusion starch.

  • PDF