• 제목/요약/키워드: structural material.

Search Result 6,441, Processing Time 0.03 seconds

Structural and Electrical Properties of (Ba,Sr)$TiO_3$[BST] Thin Films with Ar/$O_2$ ratio (Ar/$O_2$ 비에 따른 (Ba,Sr)$TiO_3$ 박막의 구조 및 전기적 특성)

  • 신승창;이문기;류기원;배선기;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.243-246
    • /
    • 1998
  • (Ba, Sr)TiO$_3$[BST] thin films were fabricated on Pt/SiO$_2$/Si substrate by RF sputtering technique. The structural, dielectric and electrical properties of BST thin films were investigated with Ar/O$_2$ ratio. Dielectric constant and dielectric loss of the BST thin film were about 1020 and 2.0[%], respectively. (at RF power 80W, post annealing temperature $650^{\circ}C$, deposition pressure of 5mTorr and Ar/O$_2$=80/20). For the BST(Ar/O$_2$=80/20) thin film with Polarization switching cycles of 10$^{10}$ , remanent polarization and coercive field were 0.084[$\mu$C/cm$^2$], 1.954[kV/cm], respectively.

  • PDF

Characteristics analysis of ZnO-Si-ZnO multi-layer thin films by pulsed laser deposition (펄스 레이저 증착법에 의해 제작된 ZnO-Si-ZnO 다층 박막의 특성 분석)

  • Kang, Hong-Seong;Kang, Jeong-Seok;Shim, Eun-Sub;Pang, Seong-Sik;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1057-1059
    • /
    • 2002
  • ZnO-Si-ZnO multi-layer thin films have been deposited by pulsed laser deposition (PLD). And then, the films have been annealed at $300^{\circ}C$ in oxygen ambient pressure. Electrical properties of the films were improved slightly than ZnO thin film without Si layer. Also, the optical and structural properties changed by Si layer in ZnO thin film. The optical and structural properties of Si-doped ZnO thin films were characterized by PL(Photoluminescence) and XRD(X-ray diffraction method) respectively. Electrical properties were measured by van der Pauw Hall measurements.

  • PDF

Electrical and structural properties of Ti thin films by sputtering (스퍼터링법으로 제조한 타이타늄 박막의 전기적 및 구조적 특성)

  • Kim, Young-Jun;Park, Jung-Yun;Jeong, Woon-Jo;Park, Gye-Choon;Lee, Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.694-698
    • /
    • 2002
  • Ti films were deposited onto $100{\times}100$ mm alumina substrates using dc magnetron sputtering under the following conditions; substrate temperature of R.T. ${\sim}400^{\circ}C$, annealing temperature of $100{\sim}400^{\circ}C$ and sputtering gas pressure of $1.3{\sim}3.0{\times}10^{-2}$ Torr. And the films were examined by X-ray diffraction analysis (XRD), scanning electron microscopy(SEM) and 4-point measurement system. The best electrical and structural properties obtained by substrate temperature of ${\sim}200^{\circ}C$, target-substrate distance of ~14 cm and sputtering pressure of $1.3{\sim}1.7{\times}10^{-2}$ Torr. Also at that condition the most excellent adhesion was observed.

  • PDF

The Structural properties of BSCT thick films fabricated by screen-printing method (Screen-printing법으로 제작한 BSCT 후막의 구조적 특성)

  • Heo, Young-Sik;Lee, Sung-Gap;Park, Sang-Man;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.545-548
    • /
    • 2002
  • $(Ba_{0.6-x}Sr_{0.4}Ca_x)TiO_3$(BSCT) (x=0.10, 0.15, 0.20) powders were prepared by the sol-gel method and BSCT thick films were fabricated by the screen-printing method. The structural properties as a faction of the composition ratio were studied. As a result of the differential thermal analysis (DTA), exothermic perk was observed at around $860^{\circ}C$ dne to the formation of the polycrystalline perovskite phase. The BSCT thick films sintered at $1350^{\circ}C$ for 2h showed the average grain size of $2{\sim}7{\mu}m$. The average thickness of BSCT thick films, obtained by 3 times of screen-printing, was approximately $85{\mu}m$.

  • PDF

Structural Properties of BSCT Thick Films with variation of Sintering Temperature (소결온도에 따른 BSCT 후막의 구조적 특성)

  • Park, Sang-Man;Lee, Sung-Gap;Yun, Sang-Eun;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.212-213
    • /
    • 2006
  • BSCT(60/30/10) powder specimens were fabricated by sol-gel method and BSCT thick films were fabricated by screen-printing method. The coating and drying procedure was repeated 6 times. Then the structural properties as a function of the sintering temperature. As a result of the TG-DTA, exothermic peak was observed at around $670^{\circ}C$ due to the crystalline phase. The BSCT sintered at $1430^{\circ}C$ showed the cubic perovskite structure. The prosity and thickness of the BSCT thick films was decreased with sintering temperature. The thickness of BSCT thick films at $1420^{\circ}C$ was approximately $40{\mu}m$.

  • PDF

Effect of slip system transition on the deformation behavior of Mg-Al alloy: internal variable based approach (비탄성 변형 이론을 바탕으로 한 Mg-Al 합금의 슬립기구 천이 현상 해석)

  • Lee H. S.;Bang W.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.186-189
    • /
    • 2004
  • Although magnesium has high potential for structural material due to the lightweight and high specific strength, the structural application has been limited by the low ductility at room temperature. The reason of the poor ductility is few activated slip systems of magnesium (HCP structure) during deformation. As temperature increases, however, additional non-basal slip systems are incorporated to exhibit higher ductility comparable to aluminum. In the present study, a series of tensile tests of Mg-Al alloy has been carried out to study deformation behavior with temperature variation. Analysis of load relaxation test results based on internal variable approach gave information about relationship between the micromechanical character and corresponding deformation behavior of magnesium. Especially, the material parameter, p representing dislocation permeability through barriers was altered from 0.1 to 0.15 as the non-basal slip systems were activated at high temperature.

  • PDF

Mat Foundation Analysis Using Variable Node Plate Bending Element (변절점 굉판휨요소를 이용한 전면기초의 해석)

  • 최창근;김한수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.7-12
    • /
    • 1992
  • The variable node plate bending element, ie, the element with one or two additional mid-side nodes is used in the analysis of mat foundation to generate the nearly ideal grid model in which more nodes are defined near the column location. The plate bending element used in this study is the one based on Mindlin/Reissner plate theory with substitute shear strain field and the nodal stresses of that element are obtained by the local smoothing technique. The interaction of the soil material with the mat foundation is modeled with Winkler springs connected to the nodal points in the mat model. The vertical stiffness of the soil material are represented in terms of a modulus of subgrade reaction and are computed in the same way as to the computation of consistent nodal force of uniform surface loading. Several mesh schemes were proposed and tested to find the most suitable scheme for mat foundation analysis.

  • PDF

Nonlinear Finite Element Analysis of Reinforced Concrete Structures Considering the Crack and Bond-Slip Effects (균열 및 부착슬립효과를 고려한 철근콘크리트 구조물의 비선형 유한요소해석)

  • 곽효경
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.65-70
    • /
    • 1992
  • This study deals with the finite element analysis of the monotonic behavior of reinforced concrete beams and beam-column joint subassemblages. It is assumed that the behavior of these members can be discribed by a plane stress field. Concrete and reinforcing steel are represented by separate material models which are combined together with a model of the interaction between reinforcing bar and concrete through bond-slip to discribe the behavior of the composite reinforced concrete material. To discribe the concrete behavior, a nonlinear orthotropic model is adopted and the crack is discribed by a system of orthogonal cracks, which are rotating as the principal strain directions are changed. A smeared finite element model based on the fracture mechanics principles are used to overcome the numerical defect according to the finite element mesh size. Finally, correlation studies between analytical and experimental results and several parameter studies are conducted with the objective to estabilish the validity of the proposed model and identify the significance of various effects on the local and global response of reinforced concrete members.

  • PDF

Wave Propagation Analysis of a Strip Foundation in Layered Soils using Infinite Elements (무한요소를 사용한 층상지반에 놓인 스트립기초의 진동전파해석)

  • 윤정방;김두기;김유진;박종찬
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.202-209
    • /
    • 1996
  • In this paper, two dimensional vertical and comer infinite elements which can include multiple wave components to model underlying half space are developed. These elements are natural and economical to model underlying stiff half space or rock. To verify the behavior of these infinite elements, vertical, horizontal, and rocking compliances of a rigid strip foundation on a viscoelastic soil profile are analyzed and compared with those of Tzong and Penzien who used the boundary solution method. Good agreements are noticed between the two methods. The influence of material properties like Poisson's ratio, material damping, and stiffness ratio of layers as well as the influence of geometrical properties such as layer thicknesses and depth of foundation embedment are studied. Example analysis is carried out for the shaking table which is located in KIMM(Korea Institute of Machinery and Materials), and the vertical and horizontal displacements of the analysis are compared with the measured, and show good results and demonstrate the efficiency of the proposed method.

  • PDF

Finite Element Analysis of Thermorheologically Simple Viscoelastic Solids (열유동학적으로 단순한 점탄성체의 유한요소해석)

  • 심우진;박인규
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.101-113
    • /
    • 1996
  • In this paper, the finite element formulation for the thermal analysis of quasi-static, uncoupled, homogeneous, isotropic and linear viscoelastic problems is presented based on the principle of virtual work. The viscoelastic material is assumed to be thermorheologically simple, which is well known material property in a large class of high polymers. The variational formulation and the finite element equation in matrix from are derived. Effective generation and storage of the hereditary stiffness matrices are given in detail especially for the case of the steady state temperature distribution T=T(x). Some numerical examples are given and compared with published results to show the versatility of the derived finite element formulations.

  • PDF