• Title/Summary/Keyword: structural instability

검색결과 454건 처리시간 0.041초

모형 가스터빈 연소기에서 화염구조와 연소불안정 특성에 대한 실험적 연구 (An Experimental Study on Flame Structure and Combustion Instability Characteristics in Model Gas Turbine Combustor)

  • 박성순;김민기;윤지수;윤영빈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.445-452
    • /
    • 2011
  • 스월러를 가진 천연가스 연료분사기가 장착된 희박 예혼합 연소기에서 화염구조의 일부분인 재순환 영역의 형성이 연소불안정에 미치는 영향에 대하여 실험적으로 연구를 진행하였다. PIV 계측기법으로 연소장에서의 화염의 안정화 그리고 불안정한 영역에서 유동장을 확인해본 결과 스월러에 의한 재순환영역은 화염의 안정화 및 난류의 강도뿐만 아니라 재순환영혁 형성의 크기에 따른 화염 재점화에도 영향을 미쳐 연소불안정 발생의 원인이 되는 열방출 섭동과 매우 밀접한 관계가 있음을 확인하였다.

  • PDF

고무풍선의 일반화 팽창 및 분기 해석 (General inflation and bifurcation analysis of rubber balloons)

  • 박문식
    • 한국산학기술학회논문지
    • /
    • 제19권12호
    • /
    • pp.14-24
    • /
    • 2018
  • 몇 가지 전형적인 기존 및 진보된 초탄성 구성모델들의 고무패치 이축인장 및 구형 또는 원통형 풍선 팽창에서의 불안정성에 대해서 밝힌다. 적용할 구성모델은 neo-Hookean 모델, Mooney-Rivlin 모델, Gent 모델, Arruda-Boyce 모델, Fung 모델, Pucci-Saccomandi 모델 등이다. 팽창 및 분기 해석은 이들 변형에너지 함수들의 막 방정식을 이용하여 수행할 수 있다. 해석에는 사각패치에 대한 Kearsley의 분기현상, 고무풍선의 일반화 한 팽창현상, 고무풍선의 분기현상을 다룬다. 이들 변형에너지 함수들 중에서도 오직 Mooney-Rivlin 모델에서만 Kearsley의 분기현상이 일어남을 확인하였다. 팽창 방정식은 구형풍선과 원통형 풍선을 함께 다룰 수 있도록 일반화 시켰다. 팽창해석에 의하여 극한점과 임계 물성치들을 무차원 압력 및 팽창 부피의 항들로 구하였다. 그렇게 구해진 결과들로부터 분기현상을 구할 수 있었다. 또한 유한요소법을 사용하여 고무류의 구조적 불안정 문제들을 다룰 때 필요한 특별한 조처에 대해서 제안하였다. 결론적으로 고무류의 불안정성을 포함하는 문제를 다룰 때는 해석기법은 물론 구성모델의 선택에 따라 결과가 달라질 수 있으므로 신중한 처리가 요구된다.

Investigation on wind stability of three-tower cable-stayed-suspension hybrid bridges under skew wind

  • Xin-Jun Zhang;Li Bowen;Nan Zhou
    • Wind and Structures
    • /
    • 제38권6호
    • /
    • pp.427-443
    • /
    • 2024
  • By using a computational program of three-dimensional aerostatic and aerodynamic stability analysis of long-span bridges under skew wind, the dynamic characteristics and structural stability(including the aerostatic and aerodynamic stability) of a three-tower cable-stayed-suspension hybrid bridge with main span of 1 400 meters are investigated numerically under skew wind, and the skew wind and aerostatic effects on the aerostatic and aerodynamic stability of three-tower cable-stayedsuspension hybrid bridge are ascertained. The results show that the three-tower cable-stayed-suspension hybrid bridge is a longspan structure with greater flexibility, and it is more susceptible to the wind action. The aerostatic instability of three-tower cable-stayed-suspension hybrid bridges is characterized by the coupling of vertical bending and torsion of the girder, and the skew wind does not affect the aerostatic instability mode. The skew wind has positive or negative effects on the aerostatic stability of the bridge, the influence is between -5.38% and 4.64%, and in most cases, it reduces the aerostatic stability of the bridge. With the increase of wind yaw angle, the critical wind speed of aerostatic instability does not vary as the cosine rule as proposed by the skew wind decomposition method, the skew wind decomposition method may overestimate the aerostatic stability, and the maximum overestimation is 16.7%. The flutter critical wind speed fluctuates with the increase of wind yaw angle, and it may reach to the minimum value under the skew wind. The skew wind has limited effect on the aerodynamic stability of three-tower cable-stayed-suspension hybrid bridge, however the aerostatic effect significantly reduces the aerodynamic stability of the bridge under skew wind, the reduction is between 3.66% and 21.86%, with an overall average drop of 11.59%. The combined effect of skew and static winds further reduces the critical flutter wind speed, the decrease is between 7.91% and 19.37%, with an overall average decrease of 11.85%. Therefore, the effects of skew and static winds must be comprehensively considered in the aerostatic and aerodynamic stability analysis of three-tower cable-stayed-suspension hybrid bridges.

Stress wave propagation in 1-D and 2-D media using Smooth Particle Hydrodynamics method

  • Liu, Z.S.;Swaddiwudhipong, S.;Koh, C.G.
    • Structural Engineering and Mechanics
    • /
    • 제14권4호
    • /
    • pp.455-472
    • /
    • 2002
  • The paper involves the study on the elastic and elasto-plastic stress wave propagation in the 1-D and 2-D solid media. The Smooth Particle Hydrodynamics equations governing the elastic and elasto-plastic large deformation dynamic response of solid structures are presented. The proposed additional stress points are introduced in the formulation to mitigate the tensile instability inherent in the SPH approach. Both incremental rate approach and leap-frog algorithm for time integration are introduced and the new solution algorithm is developed and implemented. Two examples on stress wave propagation in aluminium bar and 2-D elasto-plastic steel plate are included. Results from the proposed SPH approach are compared with available analytical values and finite element solutions. The comparison illustrates that the stress wave propagation problems can be effectively solved by the proposed SPH method. The study shows that the SPH simulation is a reliable and robust tool and can be used with confidence to treat transient dynamics such as linear and non-linear transient stress wave propagation problems.

Active control of a flexible structure with time delay

  • Cai, Guo-Ping;Yang, Simon X.
    • Structural Engineering and Mechanics
    • /
    • 제20권2호
    • /
    • pp.191-207
    • /
    • 2005
  • Time delay exists inevitably in active control, which may not only degrade the system performance but also render instability to the dynamic system. In this paper, a novel active controller is developed to solve the time delay problem in flexible structures. By using the independent modal space control method, the differential equation of the controlled mode with time delay is obtained from the time-delay system dynamics. Then it is discretized and changed into a first-order difference equation without any explicit time delay by augmenting the state variables. The modal controller is derived based on the augmented system using the discrete variable structure control method. The switching surface is determined by minimizing a discrete quadratic performance index. The modal coordinate is extracted from sensor measurements and the actuator control force is converted from the modal one. Since the time delay is explicitly included throughout the entire controller design without any approximation, the system performance and stability are guaranteed. Numerical simulations show that the proposed controller is feasible and effective in active vibration control of dynamic systems with time delay. If the time delay is not explicitly included in the controller design, instability may occur.

위성체 유연 보 구조물의 열 안정성 해석 (Thermal Stability Analysis of a Flexible Beam Spacecraft Appendage)

  • 윤일성;송오섭
    • Composites Research
    • /
    • 제15권3호
    • /
    • pp.18-29
    • /
    • 2002
  • 본 논문에서는 얇은 벽보로 모델링 한 위성체 구조물에 입사되는 열 하중에 의해 발생하는 굽힘 진동과 열적 플러터에 대하여 연구하였다. 복합재료 얇은 벽보는 회전관성과 1차, 2차 와핑, 전단변형의 비고전적 요소를 포함한다. CUS구조물로 모델링한 복합재료 얇은 벽보의 열 진동 특성은 적층 순서와 섬유강화복합재료의 방향특성인자로부터 기인된 종방향 굽힘과 횡방향 굽힘의 언성과 관련하여 연구되었다. 수치 해석적인 방법으로 열적 플러터의 안정성 영역의경계값을 구하였으며, 태양 열 플럭스의 입사각, 감쇠계수, 섬유각의 변화에 의한 보의 변위를 구하였다. 주 구조물에 압전소자를 부착하여, 감지기와 작동기로 사용하여 제어해석을 수행하였다.

다중 능동형 동조질량감쇠기가 설치된 고층빌딩의 내진성능 평가 (Seismic Performance Assessment of High-Rise Building installed with Multiple Active Tuned Mass Dampers)

  • 박관순;옥승용
    • 한국안전학회지
    • /
    • 제32권6호
    • /
    • pp.89-97
    • /
    • 2017
  • The tuned mass damper (TMD) system was first proposed as an efficient vibration control method for high-rise buildings, and multiple TMD (MTMD) system was then proposed for the purpose of improving the robust performance. Thereafter, the active TMD (ATMD) is proposed to improve the vibration control performance over the TMD and MTMD systems. However, this system may experience an system-instability problem in case of the actuator malfunction. In order to overcome such limitations of actuator malfunction causing the instability of the structural system, in this study, we investigate the feasibility of the multiple ATMD (MATMD) system that facilitates both advantages of the MTMD and ATMD. Numerical example demonstrates that, when the proposed system is designed to have the same capacity as the ATMD, it shows a similar control performance to the ATMD, but also has very good adaptive control performance against the emergency situations such as actuator failures.

GIS와 지구통계학을 이용한 충주호 남부지역의 광역적인 사면안정평가 (Regional Evaluation of Slope Stability by Using GIS and Geostatistics Around the Southern Area of Chungju Lake)

  • 문상기
    • 자원환경지질
    • /
    • 제33권2호
    • /
    • pp.117-128
    • /
    • 2000
  • Regional evaluations of slope stability by the failure criterion and by environmental geological factors were conducted. The failure criterion is the general conditions for plane failure which consider the geometrical conditions between geological discontinuities and topographical slope planes. The factor focused in this condiction is dip and dip direction. Geostatics, named semivariogram was used for establishing structural domains in slope stability evaluation by the failure criterion. The influential range was calculated to 6 km in the case of dip direction of dominant joint set and 7 km in the case of dip of the same dominant joint set. Then applying this failure criterion to the study area produced a slope stability map using the established domains and slopes generated by TIN module of ARC/INFO GIS. This study considered another regional slope stability analysis. 5 failure-driven factors 9the unstable slope map, geology, engineering soil, groundwater, and lineament density) were selected and used as data coverages for regional slope stability evaluation by geoenvironmental factors. These factors were weighted and overlayed in GIS. From the graph of cumulatave area (%) and instability index, finding critical points classified the instability indices. The most unstable slopes are located in the southern area of Mt. Eorae, Dabul-ri, and the eastern area of Junkok-ri in the first area is plane failure. Also, the expected orientations of failure are 59/338 and 86/090 (dip/dip direction).

  • PDF

Monitoring of wind turbine blades for flutter instability

  • Chen, Bei;Hua, Xu G.;Zhang, Zi L.;Basu, Biswajit;Nielsen, Soren R.K.
    • Structural Monitoring and Maintenance
    • /
    • 제4권2호
    • /
    • pp.115-131
    • /
    • 2017
  • Classical flutter of wind turbine blades indicates a type of aeroelastic instability with fully attached boundary layer where a torsional blade mode couples to a flapwise bending mode, resulting in a mutual rapid growth of the amplitudes. In this paper the monitoring problem of onset of flutter is investigated from a detection point of view. The criterion is stated in terms of the exceeding of a defined envelope process of a specific maximum torsional vibration threshold. At a certain instant of time, a limited part of the previously measured torsional vibration signal at the tip of blade is decomposed through the Empirical Mode Decomposition (EMD) method, and the 1st Intrinsic Mode Function (IMF) is assumed to represent the response in the flutter mode. Next, an envelope time series of the indicated modal response is obtained in terms of a Hilbert transform. Finally, a flutter onset criterion is proposed, based on the indicated envelope process. The proposed online flutter monitoring method provided a practical and direct way to detect onset of flutter during operation. The algorithm has been illustrated by a 907-DOFs aeroelastic model for wind turbines, where the tower and the drive train is modelled by 7 DOFs, and each blade by means of 50 3-D Bernoulli-Euler beam elements.

Running safety of metro train over a high-pier bridge subjected to fluctuating crosswind in mountain city

  • Zhang, Yunfei;Li, Jun;Chen, Zhaowei;Xu, Xiangyang
    • Structural Engineering and Mechanics
    • /
    • 제76권2호
    • /
    • pp.207-222
    • /
    • 2020
  • Due to the rugged terrain, metro lines in mountain city across numerous wide rivers and deep valleys, resulting in instability of high-pier bridge and insecurity of metro train subjected to fluctuating crosswind. To ensure the safe operation in metro lines in mountain cities, running safety of the metro train over the high-pier bridge under crosswind is analyzed in this paper. Firstly, the dynamic model of the wind-train-bridge (WTB) system is built, in which the speed-up effect of crosswind is fully considered. On the basis of time domain analysis, the basic characteristics of the WTB system with high-pier are analyzed. Afterwards, the dynamic responses varies with train speed and wind speed are calculated, and the safety zone of metro train over a high-pier bridge subjected to fluctuating crosswind in mountain city is determined. The results indicate that, fluctuating crosswind triggers drastic vibration to the metro train and high-pier bridges, which in turn causes running instability of the train. For this reason, the corresponding safety zone for metro train running on the high-pier is proposed, and the metro traffic on the high-pier bridge should be closed as the mean wind speed of standard height reaches 9 m/s (15.6 m/s for the train).