Fig. 1. Square rubber patch. (a) uniformly distributed biaxial edge loading (b) 10x10 finite element model with distributed loading control (c) 10x10 finite element model with constrained edge loading
Fig. 2. Analysis of square rubber patch (α = 0.906 ) in biaxial loading. (a) symmetric and asymmetric solutions for the symmetric loading (b) bifurcation point with respect to the material parameter (c) solutions for the non-symmetric loading (d) load-stretch curves by analytic solutions and finite element methods
Fig. 3. Rubber balloons inflations. (a) two balloons inflating by the same inflation pressure (b) spherical(ball) balloon inflation (c) cylindrical (tube) balloon inflation
Fig. 4. Inflation curves. (a) ball balloon (b) tube balloon (c) inflation paths (d) critical material parameter. NH: neo-Hookean, MR: Mooney-Rivlin, GE: Gent, GE2: Gent or Pucci and Saccomandi, FU: Fung, AB: Arruda-Boyce
Fig. 5. Tube balloon inflation and bifurcation. (a) ax-isymmetric FEM model with no restraint for inflation (b) axisymmetric FEM model with restraint for infla-tion (c) analytic results and FEM results (d) inflation and bifurcation instances of tube balloon.
Table 1. FEM calculation of bifurcation point using base state and eigenvalue analysis with perturbation
Table 2. Inflation characteristics for spherical balloon
Table 3. Inflation characteristics for cylindrical balloon
References
- R. Mangan, M. Destrade, "Gent models for the inflation of spherical balloons", International Journal of Non-Linear Mechanics, Vol. 68, pp. 52-58, 2015. DOI: https://dx.doi.org/10.1016/j.ijnonlinmec.2014.05.016
- M. A. Destrade, A. Ni Annaidh, C. D. Coman, "Bending instabilities of soft biological tissues", International Journal of Solids and Structures, Vol. 46, No. 25-26, pp. 4322-4330, 2009. DOI: https://dx.doi.org/10.1016/j.ijsolstr.2009.08.017
- D. R. Merritt, F. Weinhaus, "The pressure curve for a rubber balloon", American Journal of Physics, Vol. 46, No. 10, pp. 976-977, 1978. DOI: https://dx.doi.org/10.1119/1.11486
- M. S. Park, S. Song, "Comparative study of bifurcation behavior of rubber in accordance with the constitutive equations", The Korean Society of Mechanical Engineers, Vol. 34, No. 6, pp. 731-742, 2010. DOI: https://dx.doi.org/10.3795/KSME-A.2010.34.6.731
- L. R. G. Treloar, "The elasticity and related properties of rubbers", Reports on Progress in Physics, Vol. 36, No. 7, p. 755, 1973. DOI: https://dx.doi.org/10.1088/0034-4885/36/7/001
- A. N. Gent, I. S. Cho, "Surface instabilities in compressed or bent rubber blocks", Rubber Chemistry and Technology, Vol. 72, No. 2, pp. 253-262, 1999. DOI: https://dx.doi.org/10.5254/1.3538798
- L. M. Kanner, C. O. Horgan, "Elastic instabilities for strain-stiffening rubber-like spherical and cylindrical thin shells under inflation", International Journal of Non-Linear Mechanics, Vol. 42, No. 2, pp. 204-215, 2007. DOI: https://dx.doi.org/10.1016/j.ijnonlinmec.2006.10.010
- A. Gent, "A new constitutive relation for rubber", Rubber chemistry and technology, Vol. 69, No. 1, pp. 59-61, 1996. DOI: https://dx.doi.org/10.5254/1.3538357
- E. M. Arruda, M. C. Boyce, "A three-dimensional constitutive model for the large deformation stretch behavior of rubber elastic materials", Journal of the Mechanics and Physics of Solids, Vol. 41, pp. 389-412, 1993. DOI: https://doi.org/10.1016/0022-5096(93)90013-6
- C. O. Horgan, G. Saccomandi, "A molecular-statistical basis for the Gent constitutive model of rubber elasticity", Journal of Elasticity, Vol. 68, pp. 167-176, 2002. DOI: https://doi.org/10.1023/A:1026029111723
- Y. C. Fung, "Elasticity of soft tissues in simple elongation", The American journal of physiology, Vol. 213, No. 6, pp. 1532-1544, 1967. DOI: https://dx.doi.org/10.1152/ajplegacy.1967.213.6.1532
- E. Pucci, G. Saccomandi, "A note on the gent model for rubber-like materials", Rubber Chemistry and Technology, Vol. 75, No. 5, pp. 839-851, 2002. DOI: https://dx.doi.org/10.5254/1.3547687
- A. N. Gent, "Elastic Instabilities in Rubber", International Journal of Non-Linear Mechanics, Vol. 40 pp. 156-175, 2005. DOI: https://dx.doi.org/10.1016/j.ijnonlinmec.2004.05.006
- E. A. Kearsley, "Asymmetric stretching of a symmetrically loaded elastic sheet", International Journal of Solids and Structures, Vol. 22, pp. 111-119, 1985. DOI: https://dx.doi.org/10.1016/0020-7683(86)90001-6
- R. C. Batra, I. Mueller, P. Strehlow, "Treloar's biaxial tests and Kearsley's bifurcation in rubber sheets", Mathematics and Mechanics of Solids, Vol. 10, No. 6, pp. 705-713, 2005. DOI: https://dx.doi.org/10.1177/1081286505043032