• Title/Summary/Keyword: structural evaluation

Search Result 4,836, Processing Time 0.039 seconds

Nondestructive damage evaluation of deep beams

  • Dincal, Selcuk;Stubbs, Norris
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.3
    • /
    • pp.269-299
    • /
    • 2017
  • This paper presents a Level III damage evaluation methodology, which simultaneously, identifies the location, the extent, and the severity of stiffness damage in deep beams. Deep beams are structural elements with relatively high aspect (depth-to-length) ratios whose response are no longer based on the simplified Euler-Bernoulli theory. The proposed methodology is developed on the bases of the force-displacement relations of the Timoshenko beam theory and the concept of invariant stress resultants, which states that the net internal force existing at any cross-section of the beam is not affected by the inflicted damage, provided that the external loadings in the undamaged and damaged beams are identical. Irrespective of the aspect ratios, local changes in both the flexural and the shear stiffnesses of beam-type structures may be detected using the approach presented in this paper.

Evaluation of RPV according to alternative fracture toughness requirements

  • Lee, Sin-Ae;Lee, Sang-Hwan;Chang, Yoon-Suk
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1271-1286
    • /
    • 2015
  • Recently, US NRC revised fracture toughness requirements as 10CFR50.61a to reduce the conservatism of 10CFR50.61. However, unlike previous studies relating to the initial regulation, structural integrity evaluations based on the alternative regulation are not sufficient. In the present study, PTS and P-T limit curve evaluations were carried out by using both regulations and resulting data were compared. With regard to the PTS evaluation, the results obtained from the alternative requirements were satisfied with the criterion whereas those obtained from the initial requirements did not meet the criterion. Also, with regard to the P-T limit curve evaluation, operating margin by 10CFR50.61a was greater than that by 10CFR50.61.

Current Status on Seismic Design/Evaluation of Metropolitan Rapid Transit System (도시철도 구조물의 내진설계 및 평가 현황조사)

  • Kim, Jong-Min;Kim, Jin-Ho;Lim, Nam-Hyoung;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.220-223
    • /
    • 2008
  • Many structural engineers believed that RC underground structures like subway system might not be seriously damaged during earthquakes, until the Great Hanshin earthquake(a.k.a Kobe earthquake). But there is only one domestic seismic code of rapid transit system that established by Ministry of Construction & Transportation in 2005. Therefore, to investigate of current status on seismic design and evaluation method of rapid transit system is essential to estimate seismic performance of subway structural systems. In this study, comparing domestic codes and seismic evaluation methods with foreign system is performed.

  • PDF

PERFORMANCE EVALUATION OF NEW SPACER GRID SHAPES FOR PWRS

  • Song, Kee-Nam;Lee, Soo-Bum;Lee, Sang-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.737-746
    • /
    • 2007
  • A spacer grid, which is one of the most important structural components in a PWR fuel assembly, supports its fuel rods laterally and vertically. Based on in-house design experience, scrutiny of the design features of advanced nuclear fuels and the patents of other spacer grids, KAERI has devised its own spacer grid shapes and acquired patents. In this study, a performance evaluation of KAERI's spacer grid shapes was carried out from mechanical/structural and thermohydraulic view points. A comparative performance evaluation of commercial spacer grid shapes was also carried out. The comparisons addressed the spring characteristics, fuel rod vibration characteristics, fretting wear resistance, impact strength characteristics, CHF enhancement, and the pressure drop level of the spacer grid shapes. The results show that the performances of KAERI's spacer grid shapes are as good as or better than those of the commercial spacer grid shapes.

Validity of Seismic Performance Evaluation Using Static Analysis (정적해석을 이용한 내진성능평가의 타당성)

  • 원학재;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.475-480
    • /
    • 2001
  • The purpose of this study is to evaluate the validity of seismic performance evaluation using static analysis. For this purpose, Ordinary Moment Resisting Steel Frames(OMRSF) for different heights(3, 6 ,9, 12 story) and seismic zones(Zone 2A, 2B, 3, 4) were designed in compliance to AISC LRFD 1993 Seismic Provisions and NEHRP 1994 Guidelines. Nonlinear Static Procedure(NSP) and Nonlinear Dynamic Procedure(NDP) with a set of ground motion record were used to evaluate seismic demands in OMRSFs. Using the DRAIN-2DX program, this study compares peak displacement demands(Target Displacement) proposed by FEMA 273 with the peak roof displacement demands obtained from the inelastic time history analyses. Based on the results, the validity of procedure of seismic demand evaluation using Target Displacement is discussed.

  • PDF

Capacity Spectrum Method for Seismic Performance Evaluation of Multi-Story Building Based on the Story Drift (층간변위를 기반으로 한 다층구조물의 내전성능 평가를 위한 역량스펙트럼법의 개발)

  • Kim, Sun-Pil;Kim, Doo-Kie;Kwak, Hyo-Gyoung;Ko, Sung-Huck;Seo, Hyeong-Yeol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.205-210
    • /
    • 2007
  • The existing capacity spectrum method (CSM) is based on the displacement based approach for seismic performance and evaluation. Currently, in the domestic and overseas standard concerning seismic design, the CSM to obtain capacity spectrum from capacity curve and demand spectrum from elastic response spectrum is presented. In the multistory building, collapse is affected more by drift than by displacement, but the existing CSM does not work for story drift. Therefore, this paper proposes an improved CSM to estimate story drift of structures through seismic performance and evaluation. It uses the ductility factor in the A-T domain to obtain constant-ductility response spectrum from earthquake response of inelastic system using the drift and capacity curve from capacity analysis of structure.

  • PDF

Modeling of the Spatial Structures for Dynamic Analysis and Evaluation of Performance Point Based on Capacity Spectrum Method (동적해석을 위한 대공간 구조물의 모델링 및 능력스펙트럼법에 의한 성능점 산정)

  • Kan, Eun-Young;Lee, Sang-Ju;Han, Sang-Eul
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.49-57
    • /
    • 2006
  • Performance based seismic design is a very efficient method in evaluating the seismic capacity of building. In this study, the method estimating the performance point of the spatial structures based on capacity spectrum method(CSM) is proposed. And for efficient evaluation for the performance point of the spatial structures, the algorithm to convert spatial structural system to ESDOF system is proposed. Its efficiency is confirmed by comparing with time history analysis of full model. And dynamic behaviors of spatial structures are examined by using this method. At last, evaluation of structural performance according to variation of stiffness after plastic deformation is carried out.

  • PDF

Evaluation of static response in stress-ribbon concrete pedestrian bridges

  • Stavridis, Leonidas T.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.213-229
    • /
    • 2010
  • An analytical method is proposed for the evaluation of the static response of a prestresse-dribbon concrete pedestrian bridge, which may also be applied for the roofing of large areas. On the basis of an established analogy with a suspension bridge system, a procedure is presented for the prestresse-dribbon direct analysis, leading to the introduction of two dimensionless parameters as governing factors of the design, namely the thinness and the prestressing steel ratio. The exposed procedure, applied by a simple computer program, allows a quick evaluation of the response and permits the investigation of the influence of the aforementioned parameters on it, by means of comprehensive diagrams. The presented diagrams may be directly used for the preliminary design of a pedestrian bridge of this type, for the whole practical range of span lengths. A design example is also included, showing the applicability of the proposed procedure.

A response surface method based on sub-region of interest for structural reliability analysis

  • Zhao, Weitao;Shi, Xueyan;Tang, Kai
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.587-602
    • /
    • 2016
  • In structural reliability analysis, the response surface method is widely adopted because of its numerical efficiency. It should be understood that the response function must approximate the actual limit state function accurately in the main region influencing failure probability where it is evaluated. However, the size of main region influencing failure probability was not defined clearly in current response surface methods. In this study, the concept of sub-region of interest is constructed, and an improved response surface method is proposed based on the sub-region of interest. The sub-region of interest can clearly define the size of main region influencing failure probability, so that the accuracy of the evaluation of failure probability is increased. Some examples are introduced to demonstrate the efficiency and the accuracy of the proposed method for both numerical and implicit limit state functions.

Parallel Genetic Algorithm for Structural Optimization on a Cluster of Personal Computers (구조최적화를 위한 병렬유전자 알고리즘)

  • 이준호;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.40-47
    • /
    • 2000
  • One of the drawbacks of GA-based structural optimization is that the fitness evaluation of a population of hundreds of individuals requiring hundreds of structural analyses at each CA generation is computational too expensive. Therefore, a parallel genetic algorithm is developed for structural optimization on a cluster of personal computers in this paper. Based on the parallel genetic algorithm, a population at every generation is partitioned into a number of sub-populations equal to the number of slave computers. Parallelism is exploited at sub-population level by allocationg each sub-population to a slave computer. Thus, fitness of a population at each generation can be concurrently evaluated on a cluster of personal computers. For implementation of the algorithm a virtual distributed computing system in a collection of personal computers connected via a 100 Mb/s Ethernet LAN. The algorithm is applied to the minimum weight design of a steel structure. The results show that the computational time requied for serial GA-based structural optimization process is drastically reduced.

  • PDF