• Title/Summary/Keyword: structural evaluation

Search Result 4,836, Processing Time 0.039 seconds

Evaluation of Ultimate Pressure Capacity of Wolsong Containment Structure (월성 원자력발전소 격납건물의 극한내압평가)

  • Kwak Hyo-Gyoung;Kim Jae Hong;Kim Sun-Hoon;Chung Yun-Suk
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.183-189
    • /
    • 2005
  • Nuclear containment structure is the last barrier for being secure from any nuclear power plant accident. Even though the safety requirements of nuclear power plant have been focused on removing accidental situations, nuclear containment structure must reserve the sufficient resisting capacity to any accident because it works as the last barrier. The acceptable nuclear containment structure makes possible to limit the effect of internal accidents and to avoid radioactive release. In this study, to conduct the numerical analysis for the structural safety of a containment structure, loss of coolant accident (LOCA) is considered as the basic accidental load, and Wolsong containment structure is considered as a target structure. The CANDU containment structure, such as Wolsong containment structure, is a prestressed concrete shell structure which has dome and is reinforced with bonded tendons. The evaluation of ultimate pressure capacity was conducted by nonlinear analysis of a prestressed concrete containment structure.

  • PDF

The Evaluation of Wind-induced Pressure for the Shell Structures using Computational Fluid Dynamics (전산유체역학을 이용한 셸 구조의 형상에 따른 풍압 평가)

  • Han, Sang-Eul;Park, Ji-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.579-584
    • /
    • 2008
  • The importance and the interest of wind load have emphasized since the damage of the Jeju World cup Stadium and Main Stadium of Busan Asiad in 2002, and the appearance of high-rise buildings. In general, a evaluation for the wind load acting on structures have been carried out mainly through the wind tunnel test, but this technique has the huge shortcomings that consume too much cost and experimental time. However, with the rapid advances on computers, it is possible to analyze the wind pressure distribution acting on structures by numerical scheme. In this paper, to predict the wind pressure distribution acting on shell structures having the various shape by numerical simulation, governing equations of fluid flow and turbulent model is formulated. Also, evaluates the wind pressure coefficient in accordance with the structural shape for shell structures like as a membrane structures and dome structures.

  • PDF

The Evaluation of Structural Behavior of PSC I Type Girder Bridge through Material Nonlinear FEM Analysis (비선형 FEM 해석을 이용한 PSC I Typed 거더 교량의 구조거동 분석)

  • Sim Jongsung;Ju Minkwan;Kim Gyuseon;Moon Doyoung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.528-531
    • /
    • 2004
  • Nowadays, many of PSC bridges has constructed because high performance and long span bridge is required. Therefore, it is required that the evaluation of PSC bridges which retain various structure performance. In this study, nonlinear FEM analysis was performed with two parameter, concrete compressive strength and effective prestress force which is dominant factor for evaluating structural behavior of PSC bridge. Concrete compressive strength was adapted between 30Mpa and 100Mpa and effective prestress force was used the value which is considered effective rate for time-dependant effect. In the result of this study, it was showed that concrete compressive strength and effective prestress force is important factor for evaluating structural behavior of PSC bridge.

  • PDF

Evaluation of Design Compatibility for Lightweight Soundproof Tunnels using Pipe Truss Beams (파이프 트러스 빔을 이용한 경량방음터널의 설계적합성 평가)

  • Ahn, Dong-Wook;Choi, Sung-Joon;Noh, Myung-Hyun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • In this paper, the structural characteristics of a lightweight soundproof tunnel to reduce the dead load imposed on the bridge are investigated. Subsequently, the design procedure of soundproof tunnel structures is reviewed and a design practice for the lightweight soundproof tunnel is carried out according to the reviewed procedure. Next, design compatibility for the lightweight soundproof tunnel is verified through a detailed finite element analysis. The result for evaluation of design compatibility shows that the lightweight soundproof tunnel has structural safety in structural members, welding zones and foundation parts. It is also confirmed that serviceability and buckling safety is excellent.

Detecting Location and Depth of Cracks in Rotor using Critical Speed (임계속도를 이용한 로터의 결함 위치와 크기 판별)

  • Kim, Heung-Su;Jo, Maeng-Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.39-45
    • /
    • 2006
  • Structural health monitoring has been conducted by non-destructive evaluation method when a turbine rotor system of an aircraft engine has cracks. Local stiffness of a turbine rotor system is degraded and critical speed is changed due to the presence of cracks in rotor. Critical speed which is affected by location and depth of crack, is obtained using compliance matrix of cracked rotor. The database of the obtained critical speed is used to evaluate structural health monitoring of a rotor system of a gas turbine engine.

Customer Service Evaluation based on Online Text Analytics: Sentiment Analysis and Structural Topic Modeling

  • Park, KyungBae;Ha, Sung Ho
    • The Journal of Information Systems
    • /
    • v.26 no.4
    • /
    • pp.327-353
    • /
    • 2017
  • Purpose Social media such as social network services, online forums, and customer reviews have produced a plethora amount of information online. Yet, the information deluge has created both opportunities and challenges at the same time. This research particularly focuses on the challenges in order to discover and track the service defects over time derived by mining publicly available online customer reviews. Design/methodology/approach Synthesizing the streams of research from text analytics, we apply two stages of methods of sentiment analysis and structural topic model incorporating meta-information buried in review texts into the topics. Findings As a result, our study reveals that the research framework effectively leverages textual information to detect, prioritize, and categorize service defects by considering the moving trend over time. Our approach also highlights several implications theoretically and practically of how methods in computational linguistics can offer enriched insights by leveraging the online medium.

Stability evaluation of foundation settlement of power transmission tower (송전철탑의 기초침하에 대한 안정성 평가)

  • Lee, Dae-Soo;Cho, Hwa-Kyung;Kim, Dae-Hong;Ham, Bang-Uk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.687-696
    • /
    • 2005
  • Safety diagnosis was conducted to evaluate the long-term stability evaluation of power transmission tower of which deformation of the upper structural elements occurred. To assess the cause of the structural deformation, field investigation including BIPS, down-hole test, concrete pile coring and finite element analysis were carried out. From these studies, the major cause of deformation was found due to the heavily fractured layer and weathered soil topography at the pile tip area. The cement-milk grouting method was proposed to reinforce these weak zone around the pile tip area. Also, the increase of cross-section and stiffness for steel members of upper tower structures was suggested. Instrumental monitoring was proposed as well to verify reinforcing effect.

  • PDF

Property Evaluation of the Freeze-Thawing for Lightweight Concrete with Development of Structural Lightweight Aggregates (구조용 경량골재 개발에 따른 경량콘크리트의 동결융해특성에 관한 연구)

  • 장동일;채원규;조광현;김광일;손영현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.129-136
    • /
    • 1998
  • In this study, lightweight aggregates were developed to see the possible application as a structural uses. For the evaluation purpose, several testings were conducted to compare the physical characteristics between the controlled lightweight aggregates and other lightweight aggregates purchased from different sources. The tests included property changes of fresh concrete and strength characteristics of hardened concrete for both normal and high strength ranges. In addition, a experiment was performed to analyze the freezing and thawing resistance of new lightweight aggregate concrete against other lightweight aggregate concrete against other lightweight aggregate concretes with some experimental parameters such as lightweight aggregates, curing conditions, and water-cement ratio. The test showed that the new lightweight aggregate could be used structural components. Continuous study will be planned for future evaluations.

  • PDF

Evaluation and analytical approximation of Tuned Mass Damper performance in an earthquake environment

  • Tributsch, Alexander;Adam, Christoph
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.155-179
    • /
    • 2012
  • This paper aims at assessing the seismic performance of Tuned Mass Dampers (TMDs) based on sets of recorded ground motions. For the simplest configuration of a structure-TMD assembly, in a comprehensive study characteristic response quantities are derived and statistically evaluated. Optimal tuning of TMD parameters is discussed and evaluated. The response reduction by application of a TMD is quantified depending on the structural period, inherent damping of the stand-alone structure, and ratio of TMD mass to structural mass. The effect of detuning on the stroke of the TMD and on the structural response is assessed and quantified. It is verified that a TMD damping coefficient larger than the optimal one reduces the peak deflection of the TMD spring significantly, whereas the response reduction of the main structure remains almost unaffected. Analytical relations for quantifying the effect of a TMD are derived and subsequently evaluated. These relations allow the engineer in practice a fast and yet accurate assessment of the TMD performance.

Optimum Evaluation of PS Concrete Deck and High Strength Two Plate Girder System (PS 콘크리트 바닥판 및 고강도 2주형 거더 시스템의 최적설계평가)

  • 박태훈;박문호;조창근;권민호;남유석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.185-192
    • /
    • 2003
  • This study presents the Optimum Evaluation of PS Concrete Deck and High Strength Two Plate Girder System. Recently, for the simplification of structure and the long length of bridge, a small number girder bridge which minimized a number of girder by two is much designed and constructed. For the structural analysis, a finite element formulation considering with even the matter of torsion in the three-dimensional problem is presented. And connectively, for the design of optimum section, an algorithm of optimum design is developed. The section of a small number girder bridge which constituted of two girders and PS Concrete Deck is optimized by using optimum program developed in this study. and two girders bridge refered in this study is proved a efficiency and a economy by being compared and checked to the general plate girder bridge with five girder and Reinforced Concrete Deck.

  • PDF