• Title/Summary/Keyword: structural evaluation

Search Result 4,836, Processing Time 0.036 seconds

Damage inspection and performance evaluation of Jilin highway double-curved arch concrete bridge in China

  • Naser, Ali Fadhil;Zonglin, Wang
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.521-539
    • /
    • 2011
  • Jilin highway concrete bridge is located in the center of Jilin City, which is positioned in the middle part in Jilin Province in the east north of China. This bridge crosses the Songhua River and connects the north and the south of Jilin City. The main purpose of damages inspection of the bridge components is to ensure the safety of a bridge and to identify any maintenance, repair, or strengthening which that need to be carried out. The damages that occur in reinforced concrete bridges include different types of cracks, scalling and spalling of concrete, corrosion of steel reinforcement, deformation, excessive deflection, and stain. The main objectives of this study are to inspect the appearance of Jilin highway concrete bridge and describe all the damages in the bridge structural members, and to evaluate the structural performance of the bridge structure under dead and live loads. The tests adopted in this study are: (a) the depth of concrete carbonation test, (b) compressive strength of concrete test, (c) corrosion of steel test, (d) static load test, and (e) dynamic load test. According to the damages inspection of the bridge structure appearance, most components of the bridge are in good conditions with the exception arch waves, spandrel arch, deck pavement of new arch bridge, and corbel of simply supported bridge which suffer from serious damages. Load tests results show that the deflection, strain, and cracks development satisfy the requirements of the standards.

Structural assessment of reactor pressure vessel under multi-layered corium formation conditions

  • Kim, Tae Hyun;Kim, Seung Hyun;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.351-361
    • /
    • 2015
  • External reactor vessel cooling (ERVC) for in-vessel retention (IVR) has been considered one of the most useful strategies to mitigate severe accidents. However, reliability of this common idea is weakened because many studies were focused on critical heat flux whereas there were diverse uncertainties in structural behaviors as well as thermal-hydraulic phenomena. In the present study, several key factors related to molten corium behaviors and thermal characteristics were examined under multi-layered corium formation conditions. Thereafter, systematic finite element analyses and subsequent damage evaluation with varying parameters were performed on a representative reactor pressure vessel (RPV) to figure out the possibility of high temperature induced failures. From the sensitivity analyses, it was proven that the reactor cavity should be flooded up to the top of the metal layer at least for successful accomplishment of the IVR-ERVC strategy. The thermal flux due to corium formation and the relocation time were also identified as crucial parameters. Moreover, three-layered corium formation conditions led to higher maximum von Mises stress values and consequently shorter creep rupture times as well as higher damage factors of the RPV than those obtained from two-layered conditions.

Performance evaluation of the input and output buffered knockout switch

  • Suh, Jae-Joon;Jun, Chi-Hyuck;Kim, Young-Si
    • Korean Management Science Review
    • /
    • v.10 no.1
    • /
    • pp.139-156
    • /
    • 1993
  • Various ATM switches have been proposed since Asynchronous Transfer Mode (ATM) was recognized as appropriate for implementing broadband integrated services digital network (BISDN). An ATM switching network may be evaluated on two sides : traffic performances (maximum throughput, delay, and packet loss probability, etc.) and structural features (complexity, i.e. the number of switch elements necessary to construct the same size switching network, maintenance, modularity, and fault tolerance, etc.). ATM switching networks proposed to date tend to show the contrary characteristics between structural features and traffic performance. The Knockout Switch, which is well known as one of ATM switches, shows a good traffic performance but it needs so many switch elements and buffers. In this paper, we propose an input and output buffered Knockout Switch for the purpose of reducing the number of switch elements and buffers of the existing Knockout Switch. We analyze the traffic performance and the structural features of the proposed switching architecture through a discrete time Markov chain and compare with those of the existing Knockout Switch. It was found that the proposed architecture could reduce more than 40 percent of switch elements and more than 30 percent of buffers under a given requirement of cell loss probability of the switch.

  • PDF

Studies on the evaluation method of structural concrete strength using joint separation test body (접합분리 시험체를 사용한 구조체 콘크리트 강도 평가에 관한 실험적 연구)

  • Kim, Seong-Deok;Lee, Seon-Ho;Kim, Kwang-Ki;Jung, Kwang-Sik;Lim, Nam-Ki;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.993-996
    • /
    • 2008
  • It has been reported that destruction test by core collection is the most reliable of the structural concrete strength in present building construction field. But it causes low efficiency by damage and cutting in structure due to the core collection. It also has some problems in repairing. Additionally in case of strength test with management specimen, different environment compared to the structure environment cause problems about estimation precise structure strength. Therefore, it is required to develop structure direct strength test that has test values and credibility above the ones obtained by core specimen collection strength test and seasonal specimen test to suggest a reasonable and practical management method of structural concrete.

  • PDF

Optimum Design of the Power Yacht Based on Micro-Genetic Algorithm

  • Park, Joo-Shin;Kim, Yun-Young
    • Journal of Navigation and Port Research
    • /
    • v.33 no.9
    • /
    • pp.635-644
    • /
    • 2009
  • The optimum design of power yacht belongs to the nonlinear constrained optimization problems. The determination of scantlings for the bow structure is a very important issue with in the whole structural design process. The derived design results are obtained by the use of real-coded micro-genetic algorithm including evaluation from Lloyd's Register small craft guideline, so that the nominal limiting stress requirement can be satisfied. In this study, the minimum volume design of bow structure on the power yacht was carried out based on the finite element analysis. The target model for optimum design and local structural analysis is the bow structure of a power yacht. The volume of bow structure and the main dimensions of structural members are chosen as an objective function and design variable, respectively. During optimization procedure, finite element analysis was performed to determine the constraint parameters at each iteration step of the optimization loop. optimization results were compared with a pre-existing design and it was possible to reduce approximately 19 percents of the total steel volume of bow structure from the previous design for the power yacht.

The Analysis of Structural Meaning of Mobility Design on Furnitecture - Focused on the Works of Andrea Zittel - (건축적 가구에 나타난 모빌리티(Mobility)의 구조적 의미 분석 - 안드레아 지텔의 작품을 중심으로 -)

  • Kim, Eun-Jeong;Kim, Mi-Kyoung
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.4
    • /
    • pp.42-51
    • /
    • 2014
  • The research aims to analyze the structural meaning of mobility design on 'Furnitecture' with the works of Andrea Zittel. The study consists of the literature review and the analysis of Zittel's works. The framework for the analysis is divided into four steps: identification of visual forms/structure/function, analysis of the principles of delivering the concept of mobility, interpretation & synthesis of the relational meanings derived from the concepts of mobility, and evaluation of Zittel's tendency toward design/social background/design history, etc. Total fifteen cases are selected from Zittel's works, and each case is analyzed following the above steps. The finding shows that Zittel likes to play with geometrical forms, grid & modular system to create a minimum space for living equipped with critical furnishing. Secondly, Zittel's works deliver the concept of mobility by applying movability, adaptation, combination and transformation. Thirdly, through the concepts of mobility, Zittel reflects the ideas of high efficiency and functionalism, harmony with natural environment, search for liberty, simple & humble life and success of the designers of American modernism. Finally, it is found that modernism from the era of Bauhaus, utopian values derived from constructionism, utilitarianism inspired by Shakers and homestead act & mobile home/capsule unit suggested since 19th century in America mainly affect Zittel's works to reflect the dynamic concepts of mobility through the design of furnitecture.

Performance of tuned mass dampers against near-field earthquakes

  • Matta, E.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.5
    • /
    • pp.621-642
    • /
    • 2011
  • Passive tuned mass dampers (TMDs) efficiently suppress vibrations induced by quasi-stationary dynamic inputs, such as winds, sea waves or traffic loads, but may prove of little use against pulse-like excitations, such as near-field (NF) ground motions. The extent of such impairment is however controversial, partly due to the different evaluation criteria adopted within the literature, partly to the limited number of seismic records used in most investigations. In this study, three classical techniques and two new variants for designing a TMD on an SDOF structure are tested under 338 NF records from the PEER NGA database, including 156 records with forward-directivity features. Percentile response reduction spectra are introduced to statistically assess TMD performance, and TMD robustness is verified through Monte Carlo simulations. The methodology is extended to a variety of MDOF bending-type and shear-type frames, and simulated on a case study building structure recently constructed in Central Italy.Results offer an interesting insight into the performance of TMDs against NF earthquakes, ultimately showing that, if properly designed and sufficiently massive, TMDs are effective and robust even in the face of pulse-like ground motions. The two newly proposed design techniques are shown to generally outperform the classical ones.

Wind-tunnel tests on high-rise buildings: wind modes and structural response

  • Sepe, Vincenzo;Vasta, Marcello
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.37-56
    • /
    • 2014
  • The evaluation of pressure fields acting on slender structures under wind loads is currently performed in experimental aerodynamic tests. For wind-sensitive structures, in fact, the knowledge of global and local wind actions is crucial for design purpose. This paper considers a particular slender structure under wind excitation, representative of most common high-rise buildings, whose experimental wind field on in-scale model was measured in the CRIACIV boundary-layer wind tunnel (University of Florence) for several angles of attack of the wind. It is shown that an efficient reduced model to represent structural response can be obtained by coupling the classical structural modal projection with the so called blowing modes projection, obtained by decomposing the covariance or power spectral density (PSD) wind tensors. In particular, the elaboration of experimental data shows that the first few blowing modes can effectively represent the wind-field when eigenvectors of the PSD tensor are used, while a significantly larger number of blowing modes is required when the covariance wind tensor is used to decompose the wind field.

Performance evaluation of different strengthening measures for exterior RC beam-column joints under opening moments

  • Dar, M. Adil;Subramanian, N.;Pande, Sumeet;Dar, A.R.;Raju, J.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.243-254
    • /
    • 2020
  • Devastating RC structural failures in the past have identified that the behavior of beam-column joints is more critical and significantly governs the global structural response under seismic loading. The congestion of reinforcement at the beam-column joints with other constructional difficulties has escalated the attention required for strengthening RC beam-column joints. In this context, numerous studies have been carried out in the past, which mainly focused on jacketing the joints with different materials. However, there is no comparative study of different approaches used to strengthen RC beam-column joints, from efficiency and cost perspective. This paper presents a detailed investigation carried out to study the various strengthening schemes of exterior RC beam-column joints, viz., steel fiber reinforcement, carbon fiber reinforced polymer (CFRP) strengthening, steel haunch strengthening, and confining joint reinforcement. The effectiveness of each scheme was evaluated experimentally. These specimens were tested under horizontal loading that produced opening moments on the joints and their behavior was studied with emphasis on strength, displacement ductility, stiffness, and failure mechanism. Special attention was given to the study of crack-width.

Three-Dimensional Dynamic Analysis of Underground Openings Subjected to Explosive Loadings (폭발하중에 대한 지하공동구조체의 3차원 공적 유한요소해석)

  • 김선훈;김진웅;김광진
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.171-178
    • /
    • 1997
  • Three-dimensional dynamic analyses of underground openings subjected to explosive loadings are carried out. Dynamic analyses consist of two steps; one-dimensional source calculation and three-dimensional tunnel analysis. One-dimensional source calculation includes explosive charge and the free field surrounding rock. The input pressure time history for three-dimensional tunnel analysis is obtained from the companion one-dimensional source calculation. The computer program MPDAP-3D incorporated this analysis capability. It is shown that the computer program is a useful tool for the analysis of the structural safety evaluation of underground openings during construction by drill and blasting method.

  • PDF