• Title/Summary/Keyword: structural evaluation

Search Result 4,836, Processing Time 0.03 seconds

An Evaluation of Aging Degradation Damage for Cr-Mo-V Steel by Electrochemical Potentiokinetic Reactivation Test (재활성화 분극시험에 의한 Cr-Mo-V강의 시효열화 손상 평가)

  • Kwon, Il-Hyun;Na, Sung-Hun;Song, Gee-Wook;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.49-54
    • /
    • 2000
  • Cr-Mo-V steel is widely used as a material for the turbine structural component in fossil power plants. It is well known that this material shows the various material degradation phenomenons such as temper embrittlement, carbide coarsening. and softening etc. or ins to the severe operation conditions as high temperature and high pressure. These deteriorative factors cause tile change of mechanical properties as reduction of fracture toughness. Therefor it is necessary to evaluate tile extent of degradation damage for Cr-Mo-V steel in life assessment of turbine structural components. In this paper. the electrochemical potentiokinetic reactivation(EPR) test in $50wt%-Ca(NO_3)_2$ solution is performed to develop the newly technique for degradation damage evaluation of Cr-Mo-V steel. The results obtained from the EPR test are compared with those in small punch(SP) tests recommended by semi-nondestructive testing method using miniaturized specimen. The evaluation parameters used in EPR test are tile reactivation current density$(I_R)$ and charge$(Q_{RC})$ reactivation rate$(I_R/I_{Crit},\;Q_R/Q_{Crit})$. The results suggest that $I_R/I_{Crit}$ in these parameters shows a good correlation with SP test results.

  • PDF

Evaluation of Concrete Bridge Deck Deterioration Using Ground Penetrating Radar Based on an Extended Common Mid-Point Method (확장형 공통중간점법 기반 지표투과레이더를 이용한 콘크리트 교량 바닥판 열화 상태 평가)

  • Baek, Jong Eun;Lee, Hyun Jong;Oh, Kwang Chin;Eom, Byung Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.82-92
    • /
    • 2012
  • This study proposed a new non-destructive evaluation method for concrete bridge deck deterioration using ground penetrating radar (GPR). To calculate dielectric constant of the concrete bridge deck, an extended common mid-point (XCMP) method was developed for a two-layered structure using an air-coupled GPR antenna setup. The deterioration conditions of the concrete bridge deck such as deterioration depth was evaluated based on the dielectric constant and surface-to-average dielectric constant ratio of the concrete bridge deck. A GPR field test was conducted on an old concrete bridge with asphalt concrete surfacing to validate the new evaluation method. The test results showed that the newly proposed method estimated pavement thickness and deterioration depth of the concrete deck in a reasonable level.

Evaluation on Stiffness of High-strength Mortar-filled Sleeve Bar Splice Under Cyclic Loading (반복하중이 작용하는 고강도 모르타르 충전식 슬리브 철근이음에 대한 강성 평가)

  • Kim, Hyong Kee;Chung, Goo Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.85-93
    • /
    • 2013
  • In order to make a more reasonable evaluation on the stiffness of the high-strength mortar-filled sleeve bar splices under cyclic loading, we investigated and analyzed the existing experiment data of 106 full-sized reinforcing bar splices with test variables such as compressive strength of mortar, development length of reinforcement and sleeve type, etc. The following were found: 1) If mortar and the reinforcement development length with $f_{g^*}$(L/d) of more than 340 is used, the cast iron sleeve bar splices for SD350 and SD400 will have the stiffness of higher than A class of the AIJ code. 2) If mortar and the reinforcement development length with $f_{g^*}$(L/d) of more than 400 is used, the cast iron sleeve splices and pipe sleeve splices for SD500 will have the stiffness of higher than A class of the AIJ code.

Study on Reinforcement Effect of Circular RC Columns by Helical Bar Under Cyclic Lateral Load (반복 횡하중을 받는 원형 철근콘크리트 기둥의 Helical Bar 보강효과에 대한 연구)

  • Kim, Seong-Kyum;Park, Jong-Kwon;Han, Sang-Hee;Kim, Byung-Cheol;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • In this study, quasi-static according to the displacement-controlled (strain control) method tests on RC columns for seismic reinforcement performance in accordance with the provisions of the seismic design and construction before 1992 design code for highway bridges in korea. Used reinforcement that improves the performance of Inorganic Helical Bar, a kind of alloy steel, circular columns were tested outside the seismic reinforcing. In the experiment, fracture behavior, lateral load-displacement relation, ductility and energy assessment evaluation was performed through tests. The variables in experimental are section force of reinforcement, spiral reinforcement spacing, reinforcement method. Improved seismic performance and effect were confirmed through quasi-static test experiments. The results of study confirmed determination the appropriate size of reinforcement, reinforcement forces, spacing and selection of the type required, furthermore, not only mechanical reinforcement but also substitution of high-strength concrete reinforced with concrete cover improved seismic performance.

Evaluation of Durability and Self-clearing in Concrete Impregnated with Photocatalyst-colloidal Silica (광촉매-분산 실리카 함침 콘크리트의 내구성 및 정화성능 평가)

  • Kim, Hyeok-Jung;Kim, Young-Kee;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.47-54
    • /
    • 2018
  • Concrete undergoes various deterioration on surface. Impregnant with silicate is usually applied to concrete surface and forms insoluble hydrates, which can provide many engineering advantages. In the work, concrete impregnated with colloidal silicate is used for durability enhancement in surface and self-clearing performance is evaluated with photocatalyst-$TiO_2$ spraying. For the work, various tests are performed both for strength evaluation and durability evaluation such as absorption ratio, drying shrinkage, chloride penetration, sulfate resistance, and freezing/ thawing action. Furthermore, removal and self-clearing performance are evaluated with Acetaldehyde decomposition and Methylene blue decolorization. Through silicate impregnation and photocatalyst spraying, the impregnated concrete can have not only durability enhance but also self-clearing performance.

Tsunami Fragility Evaluation for Offsite Transformer in Nuclear Power Plants (지진해일에 의한 원자력발전소 소외변압기의 취약도 평가)

  • Kim, Min Kyu;Choi, In-Kil;Kang, Keum Seok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.18-24
    • /
    • 2010
  • In this study, a tsunami fragility methodology was determined for a probabilistic safety assessment(PSA) induced tsunami event in Nuclear Power Plant(NPP) site. For this purpose, a fragility evaluation method was presented using previous external PSA method. Failure mode and failure criteria about major safety related equipments and structures were determined. Finally, a tsunami fragility assessment was performed for offsite transformer in NPP site. For the fragility evaluation, structural failure like overturning and sliding and functional failure induced by inundation. Through this study, it can be concluded that a functional failure according to inundation height was governed total probability of failure of offsite transformer in NPP.

Applicability Evaluation and Development of High Strength Spacer with Plastic Fiber and Slag Cement (플라스틱 섬유재와 슬래그 시멘트를 이용한 고강도 간격재의 개발 및 적용성 평가)

  • Kwon, Seung-Jun;Jo, Hong-Jun;Park, Sang-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.92-98
    • /
    • 2014
  • Spacer is a construction material for maintaining cover depth and steel installation, however several problems like staining, leakage, and cracking are currently issued due to performance degradation and unsatisfactory dimensional stability of spacer. Plastic composite is widely used for prevention of brittle failure in cement based material, which yields improvement of crack resistance and ductile failure. This study is for development and applicability evaluation of high strength spacer with slag cement for environmental load reduction and plastic composite like polypropylene fiber, nylon fiber, and glass fiber. For this work, unit weight of 4 different plastic fibers are evaluated through preliminary tests. Physical tests including compressive, flexural, and tensile strength and durability tests including absorption, permeability, length change, crack resistance, carbonation, and freezing and thawing are performed. Through various tests, optimum plastic fiber is selected and manufacturing system for high strength spacer with the selected fiber is developed. Dimensional stability of the developed spacer is evaluated through field applicability evaluation.

Elastic-plastic Fracture Mechanics Analyses for Burst Pressure Prediction of Through-wall Cracked Tubes (관통균열 세관의 파열압력 예측을 위한 탄소성 파괴역학 해석)

  • Chang Yoon-Suk;Moon Seong-In;Kim Young-Jin;Hwang Seong-Sik;Kim Joung-Soo;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1361-1368
    • /
    • 2005
  • The structural and leakage integrity of steam generator tubes should be sustained all postulated loads with appropriate margin even if a crack is present. During the past three decades, for effective integrity evaluation, several limit load solutions have been used world-widely. However, to predict accurately load carrying capacities of specific components under different conditions, the solutions have to be modified by using lots of experimental data. The purpose of this paper is to propose a new burst pressure estimation scheme based on fracture mechanics analyses for steam generator tube with an axial or circumferential through-wall crack. A series of three dimensional elastic-plastic finite element analyses were carried out and, then, closed-form estimation equations with respect to both J-integral and crack opening displacement were derived through reference stress method. The developed engineering equations were utilized for structural integrity evaluation and the resulting data were compared to the corresponding ones fiom experiments as well as limit load solutions. Thereafter, since the effectiveness was proven by promising results, it is believed that the proposed estimation scheme can be used as an efficient tool for integrity evaluation of cracked steam generator tubes.

Evaluation of Performance of Korean Existing School Buildings with Masonry Infilled Walls Against Earthquakes (조적조 비내력벽을 가진 기존 학교 구조물의 내진 성능평가)

  • Moon, Ki Hoon;Jeon, Yong Ryul;Lee, Chang Seok;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.37-46
    • /
    • 2012
  • In Korea, most existing school buildings have been constructed with moment frames with un-reinforced infill walls designed only considering gravity loads. Thus, the buildings may not perform satisfactorily during earthquakes expected in Korea. In exterior frames of the building, un-reinforced masonry infill walls with window openings are commonly placed, which may alter the structural behavior of adjacent columns due to the interaction between the wall and column. The objective of this study is to evaluate the seismic performance of existing school buildings according to the procedure specified in ATC 63. Analytical models are proposed to simulate the structural behavior of columns, infill walls and their interaction. The accuracy of the proposed model is verified by comparing the analytical results with the experimental test results for one bay frames with and without infill walls with openings. For seismic performance evaluation, three story buildings are considered as model frames located at sites having different soil conditions ($S_A$, $S_B$, $S_C$, $S_D$, $S_E$) in Korea. It is observed that columns behaves as a short columns governed by shear due to infill masonry walls with openings. The collapse probabilities of the frames under maximum considered earthquake ranges from 62.9 to 99.5 %, which far exceed the allowable value specified in ATC 63.

Collapse Probability of a Low-rise Piloti-type Building Considering Domestic Seismic Hazard (국내 지진재해도를 고려한 저층 필로티 건물의 붕괴 확률)

  • Kim, Dae-Hwan;Kim, Taewan;Chu, Yurim
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.485-494
    • /
    • 2016
  • The risk-based assessment, also called time-based assessment of structure is usually performed to provide seismic risk evaluation of a target structure for its entire life-cycle, e.g. 50 years. The prediction of collapse probability is the estimator in the risk-based assessment. While the risk-based assessment is the key in the performance-based earthquake engineering, its application is very limited because this evaluation method is very expensive in terms of simulation and computational efforts. So the evaluation database for many archetype structures usually serve as representative of the specific system. However, there is no such an assessment performed for building stocks in Korea. Consequently, the performance objective of current building code, KBC is not clear at least in a quantitative way. This shortcoming gives an unresolved issue to insurance industry, socio-economic impact, seismic safety policy in national and local governments. In this study, we evaluate the comprehensive seismic performance of an low-rise residential buildings with discontinuous structural walls, so called piloti-type structure which is commonly found in low-rise domestic building stocks. The collapse probability is obtained using the risk integral of a conditioned collapse capacity function and regression of current hazard curve. Based on this approach it is expected to provide a robust tool to seismic safety policy as well as seismic risk analysis such as Probable Maximum Loss (PML) commonly used in the insurance industry.