• Title/Summary/Keyword: structural dynamics system

Search Result 424, Processing Time 0.027 seconds

Automatic reentry of deepsea riser by adaptive control (적응제어에 의한 대수심 라이저의 리엔트리)

  • 남동호
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.108-118
    • /
    • 1996
  • This paper presents automatic reentry of a deepsea reser by adaptive control. Reentry is one of the major pro blems regarding a deepsea riser. In the reentry operation, the lower end of riser must be accurately positioned over the tarket point on the seabed. But the deepsea riser shows complex elastic response due to flexibility and nonlinearity of the riser dynamics and the required positioning accuracy is high. Moreover, elastic deformation must by controlled for securing structural integrity. In adaptive control, uncertainly known parameters like added mass and drag coefficient in the riser dynamics are identified and control forces at the floating body and the riser are calculated simultaneously. An Adaptive algorithm for MIMO linear discrete time system without requiring a persistent excitation is adopted in this study. The effectiveness of adaptive control logic is tested by numerical simulation and model experiment. The designed control system shows good overall performances, so that the present study can be applied to the control of the deepsea riser.

  • PDF

Exchange Rate and Interest Rate Dynamics in an Equilibrium Framework

  • Chung S. Young
    • The Korean Journal of Financial Studies
    • /
    • v.6 no.1
    • /
    • pp.335-356
    • /
    • 2000
  • This paper examines the time series dynamics of spot and forward exchange rates and Eurocurrency deposit rates for four bilateral relationships vis a vis the U.S. dollar using daily data. The equilibrium implied by covered interest parity provides a theoretical foundation from which to estimate and analyze the dynamic properties of each system of exchange rates and interest rates. The structural statistical model is identified by relying on the implied cointegration vectors and long-run neutrality restrictions.

  • PDF

Hydraulic Cylinder Design of Lifting Pump Mounting and Structural Safety Estimation of Mounting using Multi-body Dynamics (다물체 동역학을 이용한 양광펌프 거치대의 유압 실린더 설계 및 구조 안전성 평가)

  • Oh, Jae-Won;Min, Cheon-Hong;Lee, Chang-Ho;Hong, Sup;Kim, Hyung-Woo;Yeu, Tae-Kyung;Bae, Dae-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • When a deep-seabed lifting pump is kept this device has bending and deformation in the axis due to its long length(8m). These influences can be caused a breakdown. Therefore, a mounting must be developed to keep the lifting pump safe. This paper discusses the hydraulic cylinder design of the lifting pump and structural safety estimation of the mounting using SBD(simulation-based design). The multi-body dynamic simulation method is used, which has been used in the automotive, structural, ship building, and robotics industries. In this study, the position and diameter of the hydraulic cylinder were determined based on the results of the strokes and buckling loads for the design positions of the hydraulic cylinder. A structural dynamic model of the mounting system was constructed using the determined design values, and the structural safety was evaluated using this dynamic model. According to these results, this system has a sufficient safety factor to manufacture.

Leverage Strategy to National R&D Investment in Korea: A System Dynamics Approach (국가 연구재발 투자시스템의 레버리지 전략: 시스템 다이내믹스 접근)

  • 박헌준;오세홍;김상준
    • Proceedings of the Korean System Dynamics Society
    • /
    • 2004.02a
    • /
    • pp.19-52
    • /
    • 2004
  • This study aims to grasp invisible yet dynamic systemic structure that influences the general procedure of national R&D investment system in Korea using "system dynamic methods and to suggest policy lever. Various conflicting situations, 'R&D investment paradoxes' in myopia investment and principal-agent problems etc, arise when the government decides R&D investment area and makes indispensable choice. Difficulty in the decision can be amplified due to misalignments among decision on adequate amount of R&D investment ("strategic loop"), R&D system ("structural loop") and acceptance and realization by R&D laboratories and theirs researcher ("efficacy loop"). Results of modeling and simulation of korea national R&D investment system with consideration of three causal loops show the switching pattern dynamically, in which form of technologies shifts from one to another stage like paradigm shift, when the R&D investment reaches a certain stork. R&D investment increases are directly not liked to R&D productivities because of delays and side effects during transition periods between different stages of technology development. Thus, It is necessary to develope strategies in order to enhance efficiency of technological development process by perceiving the switching pattern.

  • PDF

Multi-body Dynamic Structural Dynamic Analysis of a Canopy System for Supersonic Fighter Considering Backup Emergency Egress Conditions (대체 비상탈출 조건을 고려한 초음속 전투기용 캐노피 작동부 구조해석)

  • Kim, Dong-Hyun;Kim, Dong-Man;Kim, Young-Woo;Yang, Jian-Ming
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.81-87
    • /
    • 2007
  • In this study, analysis of structural design criteria for the canopy actuating device has been conducted considering the aerodynamic breakaway capabilities of jettisonable canopy system. Unsteady aerodynamic loads for the opened canopy configuration at passively controlled jettision mode were computed using CFD method. The general purpose multi-body finite element code, SAMCEF Mecano, is used in the implemented analyses for the passive jettision condition. The recommended altitude and speed of aircraft was suggested as design criteria of aerodynamic breakaway capability of jettisonable canopy system as a bakup egress method when normal canopy jettison sequence malfunctioned. Aerodynamic breakaway condition of jettisonable canopy was also simulated and the fracture load conditions of canopy actuator were investigated.

Development of an Accuracy Simulation Technology for Mechanical Machines (기계장비 정밀도 시뮬레이션 기술 개발)

  • Park, Chun-Hong;Hwang, Joo-Ho;Lee, Chan-Hong;Song, Chang-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.259-264
    • /
    • 2011
  • Authors are carrying out a national project which develops an accuracy simulation technology of mechanical machines to predict the stiffness and accuracy of machine components or entire machine in the design stage. Analysis methods in this technology are generalized to achieve the wide applicability and to be utilized as a web based platform type. In this paper, outline of the project such as concept, aim and configuration is introduced. Contents of the research are also introduced, which are composed of four main research fields; structural dynamics, linear motion analysis, rotary motion analysis and control and vibration analysis. Finally, a future plan is presented which is made up with three stages for the advance toward an ultimate manufacturing tools.

Spectral Element Analysis of the Pipeline Conveying Internal Unsteady Fluid (내부 비정상 유동을 갖는 파이프계의 스펙트럼요소해석)

  • Park, Jong-Hwan;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1574-1585
    • /
    • 2005
  • In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid. Four coupled pipe-dynamics equations are derived first by using the Hamilton's principle and the principles of fluid mechanics. The transverse displacement, the axial displacement, the fluid pressure and the fluid velocity are all considered as the dependent variables. The coupled pipe-dynamics equations are then linearized about the steady state values of the fluid pressure and velocity. As the final step, the spectral element model represented by the exact dynamic stiffness matrix, which is often called spectral element matrix, is formulated by using the frequency-domain solutions of the linearized pipe-dynamics equations. The FFT-based spectral dynamic analyses are conducted to evaluate the accuracy of the present spectral element model and also to investigate the structural dynamic characteristics and the internal fluid transients of an example pipeline system.

Dynamics of a rotating beam with flexible root and flexible hub

  • Al-Qaisia, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.4
    • /
    • pp.427-444
    • /
    • 2008
  • A mathematical model for the nonlinear dynamics of a rotating beam with flexible root attached to a rotating hub with elastic foundation is developed. The model is developed based on the large planar and flexural deformation theory and the potential energy method to account for axial shortening due to bending deformation. In addition the exact nonlinear curvature is used in the system potential energy. The Lagrangian dynamics and the assumed mode method is used to derive the nonlinear coupled equations of motion hub rotation, beam tip deflection and hub horizontal and vertical displacements. The derived nonlinear model is simulated numerically and the results are presented and discussed for the effect of root flexibility, hub stiffness, torque type, torque period and excitation frequency and amplitude on the dynamic behavior of the rotating beam-hub and on its stability.

Molecular Dynamics Simulation Studies of Zeolite A. VIII. Structure and Dynamics of Na+ ions in a Non-Rigid Dehydrated Zeolite-A Framework

  • 이송희;최상구
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.587-591
    • /
    • 1999
  • A molecular dynamics simulation study on the structure and dynamics of Na+ ions in non-rigid dehydrated Na12-A zeolite framework at 298.15 K was conducted using the same method reported in previous studies on rigid and non-rigid Na12-A zeolite frameworks. The agreement between the experimental and calculated results for the zeolite-A framework atoms of structural parameters for non-rigid dehydrated Na12-A zeolite is generally quite good, and for the adsorbed Na+ions the agreement is acceptable. The calculated bond lengths are generally in good agreement with the experimental results and other theoretical data. The calculated IR spectrum by Fourier transform of the total dipole moment autocorrelation function shows two major peaks around 2700 cm-1 and 7000 cm-1. The former appeared in the calculated IR spectra of non-rigid zeolite-A framework only system and the latter remains unexplained except, perhaps, indicating a new formation of a vibrational mode of the framework due to the adsorption of Na+ ions. The peaks above 6200-6800 cm-1 in non-rigid dehydrated Nal2-A zeolite are much larger than those in non-rigid dehydrated H12-A zeolite.

Control System Modeling and Optimal Bending Filter Design for KSR-III First Stage (KSR-III 1단 자세제어 시스템 모델링 및 벤딩필터 최적 설계)

  • Ahn, Jae-Myung;Roh, Woong-Rae;Cho, Hyun-Chul;Park, Jeong-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.113-122
    • /
    • 2002
  • Control system modeling and optimal bending filter design for KSR-III (Korea Sounding Rocket III) are performed. Rigid rocket dynamics, aerodynamics, sloshing, structural bending, actuator dynamics, sensor dynamics and on-board computer characteristics are considered for control system modeling. Compensation for time-varying control system parameters is conducted by gain-scheduling. A filter to stabilize bending mode is designed using parameter optimization technique. Resultant attitude control system can satisfy required frequency domain stability margin.