• Title/Summary/Keyword: structural dynamics system

Search Result 424, Processing Time 0.03 seconds

A study on the model follwing adaptive control system of industrial robtoic manipulatior for factory automation

  • Han, Sung-Hyun;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.993-998
    • /
    • 1988
  • Adaptive control system has evolved as an attempt to avoid degradation of the dynamic performance of a control system when environmental variations occurs. While the feedback control system is oriented toward the elimination of the effect of state perturbations, the adaptive control system is oriented toward the elimination of the effect of structural perturbation, upon the performances of the control system. The model reference adaptive controller is utilized in velocity loop controller for positioning and tracking is designed based on the linear decoupled dynamics.

  • PDF

A Test Study on Interface Dynamics of Current Collection System in High Speed Trains

  • Kim, Jung-Soo;Han, Jae-Hyun
    • International Journal of Railway
    • /
    • v.4 no.2
    • /
    • pp.34-41
    • /
    • 2011
  • Using a test run data, the dynamics of the interface between the catenary and pantograph constituting the current collection system in high-speed trains are investigated. The test run signals are analyzed to determine the dynamic parameters critical to the current collection performance. There are found to be frequency components of the pantograph motion that are dependent on train speed as well as components that are stationary such as the resonant mode of the panhead suspension in the pantograph. From contact force measurement using load cell, the mean contact force was found to be stable while the fluctuating component was found to be dependent on the range of the frequency of the pantograph motion taken into account. The finding implies that numerical investigations reported in the literature that are based on lumped element models of the catenary and/or pantograph provide accurate predictions on the mean value but are of limited use in estimating fluctuation of the contact force. It is concluded that simulation studies based on lumped-element models which do not incorporate panhead structural vibration modes is inaccurate at high train speeds.

Structural Analysis of Floating Offshore Wind Turbine Tower Based on Flexible Multibody Dynamics (탄성 다물체계 동역학을 기반으로 한 부유식 해상 풍력 발전기 타워의 구조 해석)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Ku, Namkug;Jo, A-Ra;Lee, Kyu-Yeul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1489-1495
    • /
    • 2012
  • In this study, we perform the structural analysis of a floating offshore wind turbine tower by considering the dynamic response of the floating platform. A multibody system consisting of three blades, a hub, a nacelle, the platform, and the tower is used to model the floating wind turbine. The blades and the tower are modeled as flexible bodies using three-dimensional beam elements. The aerodynamic force on the blades is calculated by the Blade Element Momentum (BEM) theory with hub rotation. The hydrostatic, hydrodynamic, and mooring forces are considered for the platform. The structural dynamic responses of the tower are simulated by numerically solving the equations of motion. From the simulation results, the time history of the internal forces at the nodes, such as the bending moment and stress, are obtained. In conclusion, the internal forces are compared with those obtained from static analysis to assess the effects of wave loads on the structural stability of the tower.

Design of KUH Main Rotor Small-scaled Blade (KUH 주로터 축소 블레이드 설계)

  • Kim, Do-Hyung;Kim, Seung-Ho;Han, Jung-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.32-41
    • /
    • 2009
  • In this study, scale-down design of full-scale Korean Utility Helicopter (KUH) main rotor blade has been investigated. The scaled model system were designed for the measurement of aerodynamic performance, tip vortex and noise source. For the purpose of considering the same aerodynamic loads, the Mach-scale method has been applied. The Mach-scaled model has the same tip Mach number, and it also has the same normalized frequencies. That is, the Mach-scaled model is analogous to full-scale model in the view point of aerodynamics and structural dynamics. Aerodynamic scale-down process could be completed just by adjusting scaling dimensions and increasing rotating speed. In the field of structural dynamics, design process could be finished by confirming the rotating frequencies of the designed blade with the stiffness and inertial properties distributions produced by sectional design. In this study, small-scaled blade sectional design were performed by applying domestic composite prepregs and structural dynamic characteristics of designed model has been investigated.

  • PDF

Dynamics Formulations of the Universal-joint System Under Effect on Precession (세차운동을 고려한 유니버설 조인트 시스템의 동역학적 정식화)

  • Yun, Seong-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.23-26
    • /
    • 2010
  • 본 논문에서는 유니버설 조인트의 동역학적인 해석을 위하여 오일러 각 순서에 의한 방법과 4원수에 의한 방법으로 운동방정식을 유도하였다. 원동축과 종동축의 회전은 물론 세차운동을 하는 회전축을 포함할 때 각 방법의 상이점을 발견하였다. 이러한 시스템의 동역학적 정식화를 바탕으로 한 수치 예제를 통하여 기존의 오일러 각 방법과 제시한 4원수 방법의 해석 결과를 비교하였다.

  • PDF

UNIFICATION OF THERMO-PHYSICS OF MATERIALS AND MECHANICS OF STRUCTURES - TOWARD A LIFE SPAN SIMULATOR OF STRUCTURAL CONCRETE -

  • Maekawa, K.;Ishida, T.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.29-46
    • /
    • 1999
  • The performance based design obligates quantitative assessment of required performances by means of transparent and objective science. In this design scheme, simulation of both macro and micro-scale structural behaviors is thought to be a powerful tool. This paper proposes a way how to unify the structural safety and serviceability check method and durability assessment of RC structures. Though component chemical-physical processes are crudely assumed, system dynamics of micro-scale pore structure formation and macro-scale defects and deformation of structures was shown as possible and promising approach in future. The authors understand that the unification of structural and durability design has just started. For further progress and development, predictive tool of structural behaviors from birth to death of concrete under any specified environment and load serves as an essential technicality.

  • PDF

Systems Thinking on the Change of Koean Society into Square Culture (한국 사회 변화의 티핑 포인트와 시스템 사고 - 약자의 피드백 루프와 티핑 포인트들의 인과성 검토 -)

  • kim, Dong-Hwan;Kim, Hun-Sik
    • Korean System Dynamics Review
    • /
    • v.5 no.2
    • /
    • pp.5-31
    • /
    • 2004
  • systems thinking is a methodology to explain structural mechanisms for resolving problems in highly complex and dynamic society. This article applies systems thinking to understand recent social and political changes in South Korea. This article identifies the weakers' virtuous circle that played central role in reinforcing soical climate to support the weakers and the oppressed group. Also this article adopts the concept of tipping points and triggers to explain how the political and social changes are produced and widely accepted in a few days. In conclusion we propose that systems thinking is promising in understand social and political changes.

  • PDF

A Study on the Modeling and Diagnostics in Drilling Operation (드릴링 작업의 모델링과 진단법에 관한 연구)

  • Yoon, M.C.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.73-80
    • /
    • 1998
  • The identification of drilling joint dynamics which consists of drilling and structural dynamics and the on-line time series detection of malfunction process is substantial not only for the investigation of the static and dynamic characteristics but also for the analytic realization of diagnostic and control systems in drilling. Therefore, We have discussed on the comparative assessment of two recursive time series modeling algorithms that can represent the drilling operation and detect the abnormal geometric behaviors in precision roundshape machining such as turning, drilling and boring in precision diemaking. For this purpose, simulation and experimental work were performed to show the malfunctional behaviors for drilling operation. For this purpose, a new two recursive approach (Recursive Extended Instrument Variable Method : REIVM, Recursive Least Square Method : RLSM) may be adopted for the on-line system identification and monitoring of a malfunction behavior of drilling process, such as chipping, wear, chatter and hole lobe waviness.

  • PDF

Transonic Flutter Characteristics of the AGARD 445.6 Wing Considering DES Turbulent Model and Different Angle-of-Attacks (DES 난류모델 및 받음각 변화를 고려한 AGARD 445.6 날개의 천음속 플러터 응답 특성)

  • Kim, Yo-Han;Kim, Dong-Hyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.27-32
    • /
    • 2010
  • In this study, transonic flutter response characteristics have been studied for the AGARD 445.6 wing considering various turbulent models and several angle of attacks. The developed fluid-structure coupled analysis system is applied for flutter computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. The flutter boundaries of AGARD 445.6 wing are verified using developed computational system. For the nonlinear unsteady aerodynamics in high transonic flow region, DES turbulent model using the structured grid system have been applied for the wing model. Characteristics of flutter responses have been investigated for various angle of attack conditions. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.